

Bilkent University

Department of Computer Engineering

Senior Design Project

T2426 - CheckMate

Design Project Final Report

Ayberk Berat Eroğlu - 22103675
Alp Batu Aksan - 22103246

Pelin Öner - 22102409
İpek Sönmez - 22103939
Efe Tuna Can - 22102127

Supervisor: Cevdet Aykanat

1. Introduction 4
2. Requirements Details 5

2.1 Functional Requirements 5
2.2 Non-Functional Requirements 6

2.2.1 Usability 6
2.2.2 Reliability 7
2.2.3 Transparency 7
2.2.4 Performance 7
2.2.5 Scalability 8
2.2.6 Marketability 8
2.2.7 Extendibility 9
2.2.8 Security 9
2.2.9 Maintainability 9
2.2.10 Flexibility 9

3. Final Architecture and Design Details 9
3.1 Overview 9

3.1.1 External Services 10
3.1.2 Core Analyzers 11
3.1.3 Data & Databases 11
3.1.4 Score Calculation 12

3.2 Subsystem Decomposition 15
Backend System Decomposition Diagram 16
Browser Extension Frontend System Decomposition Diagram 18
Mobile App Frontend System Decomposition Diagram 19
3.2.1 Frontend Client Layer (Google Cloud Run) 20
3.2.2 Backend Flask Layer (Google Cloud Run) 20
3.2.3 Model Services Layer (Google Cloud Run) 21
3.2.4 External APIs Layer (Google Cloud Run) 21
3.2.5 Interactions Between Layers 21

3.3 Hardware/Software Mapping 23
3.4 Class Diagrams 26

3.4.1 Browser Extension Frontend Class Diagram 26
3.4.2 Backend Class Diagram 27

3.5 Access Control and Security 28
3.6 Subscription Management Module 29

4. Development/Implementation Details 30
4.1 Frontend 30

4.1.1 Application Shell & Navigation 30

1

4.1.2 Authentication & Signup 30
4.1.3 Email Verification & Password Reset 30
4.1.4 Article Analysis & Results 31
4.1.5 Reporting Mistakes (report.js) 31
4.1.6 Search History (history-script.js) 31
4.1.7 User Profile & Subscription 32
4.1.8 Dashboard (dashboard.js) 32

4.2 Backend 33
4.2.1 Dependencies & Configuration 33
4.2.2 Data Models & Database Initialization 33
4.2.3 Article Extraction & Website Credibility 33
4.2.4 Application Factory & Extensions 34
4.2.5 Authentication & Authorization 34
4.2.6 Core Fact-Checking Endpoint: /scrap_and_search 34
4.2.7 Supplementary Endpoints 35

4.3 Models 35
4.3.1 Technology Stack and Deployment Environment 35
4.3.2 API Exposure 36
4.3.3 Subjectivity Classifier 36
4.3.4 Political Bias Classifier 37
4.3.5 Reliability Score Model 38

4.3.5.1 Preprocessing and Feature Engineering: 38
4.3.5.2 Model: 39

5. Test Cases and Results 39
6. Maintenance Plan and Details 68

6.1 Model Maintenance 68
6.2 Dependency Management 69
6.3 Database Maintenance 69
6.4 User Feedback Integration 70
6.5 System Monitoring 70
6.6. Scheduled Maintenance 70
6.7. Documentation Updates 71

7. Other Project Elements 72
7.1. Consideration of Various Factors in Engineering Design 72

7.1.1 Constraints 73
7.1.1.1 Implementation Constraints 73
7.1.1.2 Economic Constraints 73
7.1.1.3 Ethical Constraints 73

2

7.1.1.4 Language Constraints 74
7.1.2 Standards 74

7.2 Ethics and Professional Responsibilities 74
7.3 Teamwork Details 75

7.3.1 Contributing and functioning effectively on the team to establish goals, plan tasks,
and meet objectives 75

7.3.1.1 Project Management with JIRA 75
7.3.1.2 Regular Communication and Meetings 75
7.3.1.3 Role Division and Collaboration 75
7.3.1.4 Coordination and Accountability 77

7.3.2 Helping creating a collaborative and inclusive environment 77
7.3.3 Taking lead role and sharing leadership on the team 77
7.3.4 Meeting objectives 78

7.4 New Knowledge Acquired and Applied 78
7.4.1 Flask & API Design 78
7.4.2 Web Scraping Techniques 79
7.4.3 Cloud & AI Integrations 79
7.4.4 Parallelism & Performance Optimization 79
7.4.5 Database & ORM Proficiency 80
7.4.6 Frontend–Backend Integration 80
7.4.7 DevOps & Resilience Engineering 80

8. Conclusion and Future Work 81
9. Glossary 82
10. References 83

3

1. Introduction

In an era characterized by the rapid dissemination of misinformation, ensuring the accuracy and

reliability of online content has become a critical challenge. Fact-checking remains

predominantly a manual process, relying on human experts to investigate claims and verify their

authenticity. For instance, Meta, the parent company of Facebook and Instagram, employs

human fact-checkers to assess the credibility of online content [1]. Similarly, Twitter (now X)

utilizes Community Notes, a crowdsourced system that aggregates contextual insights and

fact-checks based on user contributions [2]. However, these approaches are often insufficient to

address the vast volume of information circulating on digital platforms, as manual fact-checking

is both time-intensive and resource-demanding [3].

CheckMate, an artificial intelligence (AI) powered browser extension and mobile application

designed to automate fact-checking, multimedia verification, political bias detection, and

subjectivity analysis. By leveraging machine learning (ML) techniques, CheckMate aims to

provide a more efficient and scalable solution for misinformation detection. As the internet

continues to emerge as the dominant news source surpassing traditional media in countries such

as the United Kingdom [4] the integration of automated verification tools across major news

platforms is essential for mitigating the spread of false information.

CheckMate systematically evaluates news articles and assigns a reliability score based on

multiple factors. Using natural language processing (NLP), it detects subjective language and

analyzes political bias, incorporating these findings into the reliability score assessment.

Additionally, CheckMate cross-references information with other sources via search Application

Programming Interfaces (APIs) to identify confirmatory or contradictory evidence.

The publication source is also analyzed to assess credibility. If a source has a history of

publishing misinformation, exhibits political bias, or consistently employs subjective language,

CheckMate adjusts the source’s credibility score accordingly, which contributes to the overall

reliability score of the article. Additionally, CheckMate evaluates the objectivity of article titles

and performs grammar analysis to identify linguistic indicators of reliability or potential

manipulation.

4

Upon completing its analysis, CheckMate presents the reliability score along with a rationale,

highlighting factors such as high political bias, subjective language, poor grammar quality,

subjective titling, or contradictions with reputable sources.

2. Requirements Details

CheckMate allows users to submit news articles, perform credibility and bias analysis, view

detailed reliability reports, manage user accounts, and track their analysis history based on

subscription level.

2.1 Functional Requirements

The CheckMate system is designed with the following specific functional capabilities:

● CheckMate maintains a reference database of verified news sources regularly updated to

incorporate emerging and reliable sources.

● The reference database is updated periodically to include newly emerging and credible

sources.

● CheckMate administrators have the capability to update and manage the reference

database manually or via automated scripts.

● The system compares user-submitted news URLs against the reference database to assess

the initial credibility of the news source.

● Credibility scores of known news sources are periodically refreshed based on reputation

data, historical accuracy, and crowd feedback.

● CheckMate periodically refreshes the reliability scores of previously analyzed news

articles as new data and source assessments become available.

● CheckMate analyzes the factual accuracy of article content by performing reverse

searches using external Google Custom Search API, to identify confirmatory or

contradictory evidence.

● NLP models assess each article to detect biased or subjective language, flagging

statements lacking credible references or containing conflicting information.

5

● Political articles undergo detailed sentiment and polarity analysis to classify them along a

political spectrum (left-leaning, centrist, or right-leaning.

● CheckMate cross-references news articles against various sources, increasing the

reliability score if corroborated and reducing it if significant discrepancies are identified.

● Each article receives a composite reliability score derived from:

● Publisher credibility

● Objectivity and subjectivity analysis of the news title

● Objectivity and subjectivity analysis of the news article

● Semantic similarity of the news article to various sources

● Political bias analysis of the news article

● Grammatical errors in the news article

● The system presents users with a breakdown of the score and a justification for each

contributing factor.

● The system allows users to provide direct feedback regarding inaccuracies or biases

detected in news articles, enhancing the overall effectiveness and accuracy of CheckMate

through community-driven improvements.

● The system logs all administrative actions for transparency and auditability.

● CheckMate administrators have the capability to update news source reference databases

and integrate new analysis data as it becomes available, ensuring ongoing accuracy and

relevance.

2.2 Non-Functional Requirements

The system also meets the following non-functional requirements, ensuring overall quality and

performance:

2.2.1 Usability

● The system provides an intuitive and user-friendly interface, allowing users to easily access

each article's reliability score along with its rationale.

● The system displays clear visual indicators, including:

● Color-coded reliability and credibility scores,

6

● Color-coded political bias indicators,

● Color-coded title and article objectivity scores

● Color-coded semantic similarity scores to indicate consistency with other sources,

● Color-coded spelling/grammar error rates to signal language quality.

● The system allows users to provide feedback on reliability of the articles and any possible bugs

with minimal steps.

● The system is accessible on all major Chromium browsers (Google Chrome, Opera, Microsoft

Edge and Brave) and other commonly used browsers such as Mozilla Firefox [5].

● The mobile application of CheckMate is compatible with both Android and iOS platforms

optimized for responsive display across different screen sizes.

2.2.2 Reliability

● The system ensures accuracy and consistency in reliability scoring by continuously updating

the reference database.

● User feedback is incorporated into the system to continuously improve the reliability score

database and refine classification and scoring models over time.

2.2.3 Transparency

● The system provides clear justifications for reliability scores, detailing contributing factors

such as subjectivity and political biases, contradictory evidence, and source credibility.

● The system allows users to review and contest assessments through a feedback mechanism,

fostering accountability and continuous improvement.

2.2.4 Performance

● The system parallelizes the reverse search for 10 articles using the title of the main article as

the query, executing these searches concurrently to improve efficiency and reduce latency.

● If the same article from the same news source has already been analyzed by another user, the

system retrieves its cached reliability score and metadata directly from the database, minimizing

redundant processing and improving user experience.

7

● Interactions with external APIs (for semantic similarity and reverse search) are optimized for

low latency, ensuring fast and responsive system behavior even under high load.

2.2.5 Scalability

● Requests are distributed across multiple servers to prevent bottlenecks and ensure system

responsiveness under concurrent load.

● Similar article searches and NLP tasks are executed in parallel, significantly reducing

processing time and supporting higher throughput.

● The system is deployed on Google Cloud Run, which auto-scales containerized services based

on incoming traffic.

● Each instance is provisioned with 4 vCPUs and 8 GB of memory, enabling efficient handling

of resource-intensive NLP inference and API calls.

● Google Cloud Run automatically increases or decreases the number of instances in real-time,

ensuring cost-effective scalability as user activity fluctuates.

● NLP tasks are processed asynchronously which ensures that time-intensive analyses do not

hinder real-time user interactions.

2.2.6 Marketability

● The system is designed to appeal to a broad spectrum of users, including casual readers,

journalists, and researchers, showcasing clear benefits such as quick reliability analysis and

source credibility.

● The system’s brand and messaging is crafted to highlight its role in combating misinformation,

increasing public trust and adoption.

● The system offers flexible integration options freemium, premium and enterprise options to

facilitate partnerships with news outlets, social media platforms, and research organizations.

● The system utilizes a highly reliable dataset comprising credible news sources, enabling it to

compare the source of news articles against the reference database.

● The system has a mobile application compatible with both Android and iOS environments

designed to provide a user-friendly and seamless experience on mobile devices.

8

2.2.7 Extendibility

● The system’s architecture is modular, allowing new features to be integrated with minimal

disruption.

● The codebase and database structures are organized in a manner that supports easy inclusion of

updated or alternative fact-checking sources and models.

2.2.8 Security

● The system ensures that all collected user data, including user information, visited articles, and

feedback, is handled in strict compliance with relevant data protection regulations (GDPR).

● The system employs end-to-end encryption for data transmission and securely stores user

passwords using Werkzeug Security [6].

2.2.9 Maintainability

● The system’s source code follows standardized coding conventions and best practices, making

it easier for new developers to understand and modify.

● Comprehensive documentation will be provided, covering architecture, APIs, and deployment

procedures.

2.2.10 Flexibility

● The system is implemented on all of the popular browsers (Google Chrome, Opera, Microsoft

Edge, Brave, Mozilla Firefox) and mobile platforms (iOS, Android).

● Mobile application ensures users can seamlessly access fact-checking features and reliability

scores on the go.

3. Final Architecture and Design Details

3.1 Overview
CheckMate is implemented as a cross-platform solution, designed to provide real-time news

reliability assessments through both a browser extension and a mobile application. The browser

9

extension is compatible with Chromium-based browsers such as Google Chrome, Opera,

Microsoft Edge, Brave [5], and other common browsers such as Mozilla Firefox. Additionally, it

is also available as a mobile app for both iOS and Android environments. The system

architecture follows a modular and service-oriented design, where independent components

handle distinct analytical tasks and communicate through RESTful APIs and share a centralized

PostgreSQL database on Amazon RDS. CheckMate integrates multiple external services, core

AI-based analyzers, a structured relational database, and scoring modules to automate

misinformation detection.

The architecture is decomposed into:

● Frontend Client Layer: Browser extension (Chromium, Firefox) and mobile app

(iOS/Android).

● Backend Flask Services Layer: Content scraping, article parsing, similarity analysis,

and result aggregation.

● Model Services Layer (Google Cloud Run): Stateless FastAPI [7] microservices

hosting the bias classifier, objectivity classifier, and reliability scorer.

● External APIs Layer: Google Custom Search and Vertex AI Embeddings [8].

3.1.1 External Services

● Amazon RDS hosts the PostgreSQL database, which includes 5 tables: user

information, news analyses results, news source reference tables, similar article

logs and article search request logs. [9].

● Google Cloud Run servers provide the necessary endpoints for our backend and

host NLP models which are political bias classification, objectivity classification

and reliability models [10].

● Google Vertex AI Embeddings API returns the embeddings of the retrieved text

articles to be later compared with cosine similarity to determine the respective

similarity score.

● Google Custom Search API handles text-based reverse searches to validate

article content [11].

10

3.1.2 Core Analyzers

The CheckMate architecture consists of 6 main components that work together to provide

fact-checking and political bias classification:

● Reliability Analyzer Component (Google Cloud Run): NLP model that

analyzes the reliability of the news using the similarity scores, credibility scores,

political and objectivity classification results of the news article with grammatical

error rate and title objectivity score. Predicts a final reliability score via a trained

multilayer perceptron (MLP) model and returns it to the backend.

● Reverse Search Component (Backend): Reverse searches the title of the news

article using Google Custom Search API to find 10 relevant news in parallel.

● Similarity Analyzer Component (Backend): Computes cosine similarity

between the main article and reverse search results using Google Vertex AI text

embeddings.

● Language Analyzer (Google Cloud Run)

○ Political Bias Classifier: Transformer-based model deployed via FastAPI

on Cloud Run.

○ Objectivity Classifier: Custom RNN model returning objectivity

probabilities for both article and title.

● Source Analyzer (Backend): Compares the news domain (normalized using

tldextract) against the trusted_websites database [12] and returns a discrete

credibility score.

3.1.3 Data & Databases

Amazon RDS handles the management of our database, which includes five tables,

through PostgreSQL.

● trusted_websites table stores the known trusted news sources with their credibility

labels gathered from [12].

● article_searches table holds the outcomes of each analysis with reliability scores,

credibility scores, political bias classification results, similarity results, objectivity

classification results and image analysis results with news URL and news title. It

11

also holds the last search date for the news’ reliability score to get updated every

week.

● users table holds the details of registered users, including attributes such as user

ID, email address, password (hashed for security), creation date, subscription plan

and Google ID (for sign in with Google option). This table is essential for

managing user authentication, profile information, and activity tracking within the

system.

● similar_articles table stores the 10 reverse-searched articles, including each

article's title, URL, similarity score (from the similarity analyzer component), and

search date. Reverse search is performed using the searched news text via the

Google Custom Search API.

● article_requests table holds the news searched by the user with search date.

3.1.4 Score Calculation

The final reliability score displayed to the user is a result of aggregating several analytical

outputs, each representing a specific aspect of the article’s content quality, bias, and

source trustworthiness. These individual scores are computed by independent

components and NLP models and then synthesized using a central Reliability Score

model. The weights assigned to each input component are empirically derived from a

user perception survey conducted by our team, ensuring that the model reflects real-world

expectations about what makes information trustworthy.

The input sub-scores that contribute to the overall reliability score are as follows:

● Credibility Score:

This score is computed by the Source Analyzer Component, which references the

news article’s source against the trusted_websites table in our PostgreSQL

database. The table contains curated metadata about domains, including their

historical reliability, political inclination, and record of factual accuracy. The

score is a discrete value ranging from 0-2 where 0 indicates uncredible, 1

indicates mixed and 2 indicates credible.

12

● Similarity Score:

The Similarity Score Calculator uses Google Vertex AI text embeddings API to

generate embeddings for the article’s text. These are compared via cosine

similarity to embeddings of 10 related articles retrieved using Google Custom

Search API. The average similarity score reflects how closely the input article

aligns with information published by other reputable sources. The score is a

continuous value ranging from 0-1 where 1 indicates the highest similarity.

● Political Bias Score:

This score is the result of political bias classification model that evaluates whether

the article leans left, right, or remains neutral indicated by central leaning. The

model considers phrasing, lexical patterns, and ideological indicators. Political

slant affects the reliability score depending on its extremity. The score is a

continuous value ranging from 0-1 where 0 is designated as far-left and 1 is

designated as far-right and 0.5 is set as centrist-view.

● Objectivity Score:

This score quantifies how objective or subjective the article's language is. Articles

that rely on emotional, vague, or manipulative language are marked as more

subjective and penalized accordingly in the final calculation. The score is a

continuous value ranging from 0-1 where 1 indicates the highest objectivity.

● Title Objectivity Score:

This score evaluates whether the article's title is written in a neutral tone or if it

contains clickbait, emotionally charged language, or exaggerated claims. Since

headlines heavily influence reader perception, biased or manipulative titles result

in a reduced reliability score. Same scoring method is used as the regular

objectivity score.

● Grammatical Error Rate:

This functionality detects and quantifies grammatical errors throughout the article.

Poor grammar often signals automated or low-quality authorship and is treated as

a red flag for misinformation. It adds a valuable layer of quality assurance.

All the scores mentioned above are aggregated by the Reliability Score Calculator, which

applies weighted factors informed by our survey data to compute a final normalized score

13

between 0 and 1 where 1 is the highest reliability. This value is later converted to a

percentage for user-friendliness.

Fig. 1: User perception survey conducted by our team [13]

Fig. 2: Weights assigned to each input component in Reliability Score Model are

empirically derived from our user perception survey conducted by our team

Once computed, the reliability score shall be presented to the user with a color-coded

indicator:

● Green for reliable articles

● Yellow for mixed or moderately reliable articles

● Red for unreliable articles

All features are passed to the Reliability Scoring Service on Cloud Run, which returns a

value ∈ [0,1] interpreted with:

14

● Green: Reliable (≥ 0.75)

● Yellow: Mixed (0.45 – 0.74)

● Red: Unreliable (< 0.45)

A score rationale breakdown is shown to the user, along with interpretations of

objectivity, bias, and trust indicators. This structured, explainable scoring pipeline allows

CheckMate to provide fast, meaningful, and evidence-based evaluations of online news

articles at scale.

3.2 Subsystem Decomposition
CheckMate’s architecture is decomposed into:

● Frontend Clients Layer: Browser extension (Chromium, Firefox) and mobile app

(iOS/Android).

● Backend Flask Services Layer: Content scraping, article parsing, similarity analysis,

and result aggregation.

● Model Services Layer (Google Cloud Run): Stateless FastAPI microservices hosting

the bias classifier, objectivity classifier, and reliability scorer.

● External APIs Layer: Google Custom Search and Google Vertex AI text embeddings.

15

Backend System Decomposition Diagram

16

17

Browser Extension Frontend System Decomposition Diagram

18

Mobile App Frontend System Decomposition Diagram

19

3.2.1 Frontend Client Layer (Google Cloud Run)

This layer provides the user-facing interfaces for CheckMate:

● CheckMate Browser Extension: Compatible with Chromium-based browsers (Chrome,

Edge, Opera, Brave) and Mozilla Firefox.

● CheckMate Mobile Application: Available for both iOS and Android platforms.

Each client includes modules for:

● Authentication (sign-in/sign-up)

● Dashboard access

● Search history visualization

● Detailed article analysis results

● User profile and subscription management

All user actions are transmitted as HTTPS requests to a shared backend, ensuring consistent

experience across platforms.

3.2.2 Backend Flask Layer (Google Cloud Run)

The core backend logic is implemented using Flask and deployed as a Google Cloud Run

service, acting as the bridge between the frontend and the deeper processing layers. It includes

the following subsystems:

● Backend Server: Manages API routing, session validation, and communication with

databases and model services.

● Article Extractor: Parses article text, title, metadata, and images using hybrid scraping

and fallback browser automation.

● Reverse Search Engine: Performs semantic retrieval via Google Custom Search API,

fetches articles, and filters domains.

● Similarity Analyzer: Computes cosine similarity between articles using embeddings

from the Vertex AI API.

20

● Website Credibility Checker: Cross-references domains against the trusted source

database to assign a credibility label.

This layer is shared across all frontend clients and interacts with a centralized PostgreSQL

database on Amazon RDS, maintaining user search logs, results, and system metadata.

3.2.3 Model Services Layer (Google Cloud Run)

Stateless FastAPI microservices, independently deployed on Google Cloud Run, handle ML

model inference for:

● Political Bias Classification Model: Uses a transformer-based classifier to determine

left/center/right orientation.

● Objectivity Classification Model: Evaluates linguistic neutrality of both article text and

title.

● Reliability Scoring Model: Aggregates features (bias, objectivity, credibility, similarity,

grammar) to produce a final reliability score using a trained MLP model.

These services are modular and independently scalable, enabling efficient parallel processing and

isolated updates.

3.2.4 External APIs Layer (Google Cloud Run)

The External APIs layer enhances CheckMate’s capabilities by integrating third-party services:

● Google Custom Search API: Retrieves web results related to fact-checking queries [11].

● Google Cloud Vision API: Facilitates image recognition and analysis for reverse

searching [14].

● Google Vertex AI Text Embeddings API: Retrieves the embeddings for the searched

article and the articles returned by the Reverse Search Component.

3.2.5 Interactions Between Layers

Users interact with the system through the Client Layer, which includes the CheckMate browser

extension and mobile application. These interfaces capture user actions such as article

submission, feedback, and profile management and send them as HTTP requests to the backend

via secure API calls.

21

The Backend Logic Layer, hosted on Google Cloud Run, receives and processes these requests.

It coordinates the necessary operations by invoking relevant modules, including the article

extractor, reverse search engine, and AI-powered analyzers. These services evaluate the

credibility, similarity, political bias, objectivity, and grammatical quality of the article.

All processed data including user input, analysis results, metadata, and feedback is stored in a

PostgreSQL relational database hosted on Google Cloud. This data is used for tracking history,

improving model performance, and ensuring consistent scoring across future user interactions.

This modular, multi-layered architecture enables CheckMate to deliver accurate and real-time

misinformation detection, while supporting scalability, performance optimization, and easy

system maintenance.

22

3.3 Hardware/Software Mapping

The CheckMate system consists of four main modules in its hardware/software mapping:

CheckMate Client, Google Cloud Run, RDS, and the Codebase. The CheckMate Client module

includes the CheckMate Extension and CheckMate Mobile, which are for client interaction.

These clients communicate with the CheckMate Backend Server, which is deployed on Google

Cloud Run. The backend is responsible for handling requests and running machine learning

models: Objectivity Classification Model, Political Bias Classification Model, and Reliability

Score Calculator Model to analyze and classify input data. The AWS RDS module serves as the

database, storing user interactions, analysis results, and system data. Additionally, the Codebase

module is hosted on GitHub, where the source code is maintained and updated. This structure

ensures that CheckMate is scalable, secure, and capable of handling multiple user requests

23

efficiently.Given the modular architecture of CheckMate, different system components are

deployed across cloud platforms and client environments optimized for their respective

workloads.

Backend (Flask Services)

● Hosting Platform: Google Cloud Run

● Deployment Model: Containerized via Docker

● Operating System: Linux (inside container runtime)

● Scaling: Automatically scales up to 10 instances based on concurrent requests

● Resources per Instance:

○ Memory: 8 GB RAM

○ CPU: 4 vCPU

Model Services (FastAPI Microservices)

● Hosting Platform: Google Cloud Run

● Services Hosted: Political Bias Classifier, Objectivity Classifier, Reliability Scorer

● Deployment Model: Stateless containerized microservices

● Resources per Instance:

○ Memory: 8 GB RAM

○ CPU: 4 vCPU

● Scaling: Independent autoscaling per service up to 5 concurrent instances

Frontend (Mobile App & Web Extension)

● Mobile App Platform: Capacitor-based hybrid app for iOS and Android

● Hosting (Web Extension): Client-side execution within user’s browser

● Compatibility: Supports Chromium-based browsers (Chrome, Edge, Brave) and Firefox

● Execution Environment: Local device or browser runtime

● Resource Utilization: Lightweight; depends on the end-user device but optimized for

low memory and CPU usage

24

Temporary Hardware for Model Training

● Platform: AWS EC2

● Instance Type: EC2 G5

● Resources:

○ GPU: 1× NVIDIA A10

○ CPU: 8 vCPUs

○ RAM: 64 GB

All components are deployed on scalable cloud infrastructure, allowing resource limits to be

increased as needed. The estimated operational cost is approximately $1 per user per month over

an 8 month period, covering inference, storage, and scaling overhead.

25

3.4 Class Diagrams

3.4.1 Browser Extension Frontend Class Diagram

26

3.4.2 Backend Class Diagram

27

3.5 Access Control and Security
CheckMate implements a tiered access control system based on Free, Premium, and Enterprise

subscription levels. Security is enforced through a combination of authentication, authorization,

encrypted communication, and secure storage mechanisms:

● Authentication & Tokenization:

○ Users authenticate via email/password, Google OAuth, or Facebook login.

○ Upon successful login, a JWT token is issued and attached to subsequent requests

for session continuity.

○ Tokens are signed and time-limited, with expiration adjusted based on “remember

me for 30 days” preference.

● Role-based Access Control (RBAC):

○ Sensitive operations (subscription plan updates, payment processing,

administrative actions) are restricted to verified roles.

○ Each incoming request is authorized against the user’s plan and verification status

using custom backend decorators (@token_required).

● Secure Storage:

○ All user data (email, hashed passwords, OAuth IDs, subscription plans, usage

history) is stored in Amazon RDS PostgreSQL, protected by VPC, IAM-based

connection restrictions, and parameterized SQL queries.

○ Passwords are hashed using bcrypt-based hashing via werkzeug.security.

● Request Limits & Rate Control:

○ API usage caps are enforced per tier via runtime request counting

(DAILY_USAGE logic).

● Security Practices:

○ HTTPS is enforced across all endpoints.

○ Email verification via TOTP (time-based one-time password) is implemented for

account integrity.

○ Payment handling is delegated to İyzico, a PCI-DSS-compliant provider, using

tokenized card data.

28

3.6 Subscription Management Module
The Subscription Management module governs access to system features based on the user's

subscription tier:

● Subscription Plan Limits:

○ Free:

■ Up to 20 analyses/day

■ Limited output: summarized scores only

○ Premium:

■ Up to 100 analyses/day

■ Full access to breakdowns: similarity details, objectivity score details of

title and article, political bias, grammar errors

○ Enterprise:

■ Unlimited access

■ Access to private bulk-analysis API and enhanced dashboards

● Middleware:

○ On every API call (/scrap_and_search, /user/stats), the user’s plan is checked from

the users table.

○ Daily usage is calculated by querying article_requests joined with timestamps.

○ Throttling is enforced using app.config['DAILY_USAGE'] and custom exception

handlers.

● Payment & Subscription Plan Downgrade Handling:

○ Payments are handled securely via İyzico API with card tokenization (cardToken,

cardUserKey) and secure HMAC-based authentication.

○ Subscription upgrades and downgrades are reflected in real-time by updating the

subscription_plan field in the database.

○ On payment failure or cancellation:

■ Users are automatically reverted to Free plan.

■ Their access is restricted immediately without deleting historical data.

● Administrative Control:

○ Admins can manually assign plans via a secure endpoint (not exposed to users).

29

○ Enterprise onboarding can be customized through email invitations or private

contract uploads.

4. Development/Implementation Details

4.1 Frontend
The frontend of CheckMate is implemented separately for the browser extension and the mobile

app, both communicating with the shared backend via secure RESTful APIs.

4.1.1 Application Shell & Navigation

All pages (Main Menu, Analyze, Results, History, Profile, Dashboard, Email Verification, Sign

In/Up, Report) share:

● A common navigateTo(page) helper for intra-extension navigation.

● localStorage to persist the JWT token, user email, plan, and the most recent analysis

results.

● Conditional redirects based on authentication state.

4.1.2 Authentication & Signup

● Sign-In (signin-script.js): Captures email, password, and “Remember Me,” shows inline

validation/errors, swaps the button for a spinner during the POST /user/login call, stores

token, userEmail, and userPlan on success, and navigates to MainMenuPage.html.

Supports Google OAuth (authService.googleSignIn()) and Facebook OAuth via

chrome.identity.launchWebAuthFlow .

● Sign-Up (signupscript.js): Toggles password visibility (eye/eye-slash icons), validates

password vs. confirm-password, then calls authService.register(email, name, password)

(using email as name), and on success redirects to SignInPage.html .

4.1.3 Email Verification & Password Reset

● Verification Flow (email-verification.js & script.js):

30

○ Email Entry: User inputs email; clicking “Send Code” POSTs to

/user/send-verification-code, shows success/error messages, hides email form, and

reveals code-entry section.

○ Code Confirmation: Validates a six-digit code, POSTs to /user/verify-email, then

on success shows a notification and redirects to SignInPage.html.

○ UI Logic: Toggling between sections, input validation (email regex, numeric

code), and user feedback via text messages and CSS classes .

4.1.4 Article Analysis & Results

● Analysis Trigger (analyze-script.js): Queries the active tab’s URL, allows manual entry,

then POSTs { url } to /scrap_and_search with the JWT header. Stores the JSON response

in localStorage.analysisResults and redirects to ResultPage.html .

● Result Rendering (similar-article.js): Reads analysisResults and populates:

○ Reliability, Objectivity, Title Objectivity, Bias scores (percentages, color classes).

○ Website Credibility label.

○ Similar Articles list with titles, links, and similarity badges.

○ Image Analysis entity lists and thumbnails.

● Result Placeholders (result-scripts.js): “More Details” and “Report Mistake” buttons

currently fire alerts, marking spots for future UI enhancements .

4.1.5 Reporting Mistakes (report.js)

Handles user feedback on analysis errors:

● Toggles custom radio button styles (active class).

● Pre-selects “Reliability Score Issue” if reportType was set in localStorage.

● On form submit, gathers reportType and message, POSTs to /report with JWT, shows a

loading spinner, and displays success/failure notifications.

● Resets form and radio styling on success .

4.1.6 Search History (history-script.js)

● Fetches GET /user/searches with JWT, reverses to show newest first.

31

● Formats timestamps, renders clickable cards (title, URL, date, reliability badge).

● On click, disables other cards, shows a spinner, fetches /article/{id}, reloads that analysis

into localStorage, and navigates to ResultPage.html .

4.1.7 User Profile & Subscription

● Profile Display (profile-script.js): Reads userEmail and userPlan from localStorage,

updates the DOM with plan badges (“Free”, “Premium”, “Enterprise”), gradients, and

hover animations; wires “Change Password” and “Upgrade”/“Manage Plan” buttons .

● Payment Logic (payment-service.js): Exports PaymentService with methods to initialize

(/cf/initialize), query (/cf/query), fetch current plan (/user/stats), and update the plan

(/user/update-plan), all attaching the JWT to requests .

4.1.8 Dashboard (dashboard.js)

Provides a real‐time usage and accuracy dashboard:

● Initialization: Fetches GET /user/stats, normalizes percentage values, or falls back to

mock data on error.

● UI Updates:

○ Progress Bar: Animates daily usage vs. limit, color‐codes based on thresholds.

○ Stat Cards: Daily limit, articles analyzed today, total articles, and Reliability over

selectable ranges (week/month/year).

○ Animations: Fade‐in and count animations for card values.

● Charting: Uses Chart.js to render a bar chart of articles‐analyzed distribution for the

selected time range, with dynamic data processing for weekly, monthly, and yearly views.

● Interactivity: Time‐range selector, menu/profile/history buttons, and auto‐refresh every

five minutes .

Together, these scripts deliver a seamless, authenticated Chrome-extension UI for CheckMate

32

4.2 Backend
The backend is built using Flask and deployed on Google Cloud Run, handling core processing,

external API integration, database interaction, and orchestration of model services.

4.2.1 Dependencies & Configuration

All third-party libraries are declared in requirements.txt, including Flask and its extensions

(Flask-CORS, Flask-Mail, Flask-SQLAlchemy), environment management (python-dotenv),

authentication (PyJWT, pyotp, itsdangerous), headless browsing (undetected-chromedriver),

HTML parsing (beautifulsoup4), database drivers (psycopg2-binary), and Google API clients

(google-auth, google-genai) .

Configuration values- database credentials, JWT secret, Google API keys, mail server details,

and İyzico payment secrets- are all loaded via load_dotenv() in both app.py and init_db.py,

ensuring no sensitive data is hard-coded .

4.2.2 Data Models & Database Initialization

In models.py, we define four core tables with SQLAlchemy:

● User: stores credentials, subscription plan, social IDs, verification status, and relations to

requests.

● ArticleSearch: logs each analyzed URL, title, and its scores (reliability, credibility,

objectivity, bias) alongside a timestamp.

● SimilarArticle: holds titles, URLs, and similarity scores for related articles.

● ArticleRequest: a join table tracking which users requested which analyses .

The script init_db.py uses these model definitions to create all tables in PostgreSQL by spinning

up a minimal Flask app and calling db.create_all() within its application context .

4.2.3 Article Extraction & Website Credibility

Raw content is fetched and cleaned by the ArticleExtractor class in ArticleExtractor.py. It

launches an undetected Chrome instance, handles retries and cookie management, scrolls

33

dynamically, and uses BeautifulSoup with enhanced and fallback selectors to pull out titles,

paragraphs, dates, and images .

Before any NLP analysis, website_checker.py looks up the article’s domain against a

trusted_websites table to assign a preliminary credibility score via a simple SQL query .

4.2.4 Application Factory & Extensions

Most of the backend service is in app.py. The create_app() function wires up:

● Flask with environment-driven settings.

● Flask-CORS to allow our Chrome extension and other clients to hit the API.

● Flask-Mail for all email flows.

● SQLAlchemy bound to a PostgreSQL URI built from env vars.

All of these initializations happen before any routes are registered .

4.2.5 Authentication & Authorization

A token_required decorator extracts a Bearer token from the Authorization header, decodes it

with current_app.config['JWT_SECRET_KEY'], and fetches the corresponding User. Invalid,

missing, or expired tokens immediately yield HTTP 401 responses .

For email-based verification, we integrate itsdangerous.URLSafeTimedSerializer (link tokens)

and a TOTP-based flow (pyotp wrapped by TOTPVerification) to send and confirm one-time

codes via email.

4.2.6 Core Fact-Checking Endpoint: /scrap_and_search

This POST route orchestrates the complete analysis pipeline:

● Validate input for a JSON body containing "url".

● Fetch website credibility via check_website_score.

● Cache lookup: if the URL was seen before, return existing ArticleSearch and

SimilarArticle records, logging a new ArticleRequest if needed .

34

● Fresh extraction: instantiate ArticleAnalyzer (wrapping the extractor and NLP logic),

validate the scraped content, and call its get_similar() method to retrieve semantically

similar articles via Google Custom Search + Vertex AI Text Embeddings .

● Persist results: create new rows in ArticleSearch, ArticleRequest, and bulk-insert all

SimilarArticle entries within one DB transaction for atomicity .

● Return JSON with reliability, objectivity, bias scores, website credibility, and an array of

similar articles.

Detailed debug print() statements pepper the flow to aid troubleshooting in container logs.

4.2.7 Supplementary Endpoints

Beyond analysis, app.py implements:

● User lifecycle: registration, login (with JWT issuance), password updates,

forgotten-password resets, and social OAuth (Google/Facebook) flows.

● Subscription & payments: İyzico integration via HMAC-signed requests

(generate_iyzico_v2_headers), endpoints to initialize (/cf/initialize) and query (/cf/query)

checkout forms, and upgrade plans.

● Analytics & history: /user/stats aggregates counts and average accuracy over various

timeframes; /user/searches and /article/<id> let users retrieve past analyses.

● Reporting: a simple /report endpoint for bug and feedback submissions.

All routes leverage the same application context, shared DB session, and authentication

mechanisms for a cohesive, maintainable codebase.

4.3 Models
The core NLP models in CheckMate perform political bias classification, objectivity scoring, and

reliability scoring, each accessed as independent microservices.

4.3.1 Technology Stack and Deployment Environment

The backend responsible for handling model inference in CheckMate is developed using:

35

● Language: Python 3.10

● Framework: FastAPI for asynchronous REST API handling

● ML Libraries:

○ transformers (HuggingFace) for the political bias classifier

○ joblib for loading serialized scikit-learn models

○ nltk for tokenization in the subjectivity classifier

○ torch (PyTorch) for deep learning model inference

○ numpy for numerical computation

● Runtime Optimization: asyncio with ThreadPoolExecutor is used for concurrent

execution to maintain responsiveness while running CPU-bound inference tasks.

● A Dockerfile for deployment.

4.3.2 API Exposure

The checkmate-api service exposes the following HTTP endpoints:

● GET /: Health check route

● POST /subjectivity: Runs sentence-level subjectivity analysis

● POST /political: Classifies political bias as left, center, or right

● POST /reliability: Returns a final reliability score for a news article

4.3.3 Subjectivity Classifier

The subjectivity module uses a custom neural classifier for sentence classification.

● Module: SubjectivityClassifier

● Model: TensorFlow.tf model trained on subjective vs. objective sentences

● Embeddings: Pre-trained GloVe embeddings [15] (glove.6B.50d.word2vec.txt)

● Processing Pipeline:

○ The input article is split into sentences using nltk.tokenize.sent_tokenize.

○ Each sentence is converted into an embedding.

○ The model returns:

■ subjective_sentences: list of subjective sentences

36

■ objective_sentences: list of objective sentences

■ subjectivity_prob: average probability of subjectivity across the article

■ class_label: majority class (subjective or objective)

● Accuracy: Approx. 90.5% on balanced validation data

Epoch Precision (%) Recall (%) F1 Score (%) Accuracy (%)

29 91.48 88.61 90.02 90.09

30 90.57 90.57 90.57 90.49

31 85.44 94.50 89.74 89.10

32 90.43 90.96 90.70 90.58

33 90.57 90.57 90.57 90.49

34 89.58 91.16 90.36 90.19

35 90.00 91.94 90.96 90.78

36 90.14 91.55 90.84 90.68

37 90.69 89.98 90.34 90.29

38 91.88 86.64 89.18 89.40

39 87.89 94.11 90.89 90.49

Execution is delegated to a ThreadPoolExecutor to avoid blocking the main FastAPI event loop.

4.3.4 Political Bias Classifier

This module classifies articles into Left, Center, or Right political orientation.

● Model Architecture: BERT (base-uncased) fine-tuned for 3-class classification

● Tokenizer: HuggingFace AutoTokenizer

● Inference Method:

○ Input text is tokenized with truncation and padding (max_length=512).

○ The model outputs logits which are softmax-normalized into probability

distributions.

37

○ The predicted label is the argmax of the logits.

● Labels: 0 → Left, 1 → Center, 2 → Right

● Accuracy: Approx. 86% on balanced validation data

● Output: JSON response containing:

○ prediction: predicted class (Left, Center, Right)

○ probabilities: softmax-normalized confidence scores for each class

This classification is used as a core feature in the reliability calculation model.

4.3.5 Reliability Score Model

The reliability score is calculated based on bias, objectivity, source credibility, and semantic

similarity scores. The /reliability endpoint accepts a POST request with the following JSON

payload:

{
 "bias_probs": {"Left": 0.2, "Center": 0.6, "Right": 0.2},
 "objectivity_score": 0.82,
 "credibility_score": "credible",
 "similarity_scores": [0.73, 0.81, 0.67, ...]
}

4.3.5.1 Preprocessing and Feature Engineering:

● Extremism: |Left - Right| – captures ideological polarity

● Credibility Score is mapped to: "credible" → 1.0, "mixed" → 0.5, "uncredible" → 0.0

● Similarity Scores (10 scores from reverse search results):

○ Mean is used only if above a 0.5 threshold (ensuring article is sufficiently

verifiable).

○ sim_mean, sim_max, sim_min, and sim_std are extracted.

The input features are a 10-dimensional vector:

[center_prob, left_prob, right_prob, extremism, objectivity_score, credibility_score,
 sim_mean, sim_max, sim_min, sim_std]

38

4.3.5.2 Model:

● Algorithm: Multi-Layer Perceptron (MLP) trained via scikit-learn

● Scaler: MinMaxScaler applied to normalize input features

● File Formats:

○ Model: mlp_model.joblib

○ Scaler: scaler.joblib

● Output:

○ A float score in the range [0, 1] representing final reliability

○ Rounded to 4 decimal places

○ Internally clamped to stay within valid bounds

○ Later visualized as a percentage in the UI (e.g., 0.91 → 91%)

5. Test Cases and Results

Test ID TC_1.1 – Add

Extension

Category Functional Severity Critical

Objective Verify the extension can be installed successfully.

Steps User installs the Checkmate extension.

Expected Extension installation succeeds with no errors (the extension icon is visible).

Result Pass

Date 01.03.2025

Test ID TC_1.2 – Sign Up

with Valid Data

Category Functional Severity Critical

Objective Verify that a new account is created with valid data.

39

Steps User clicks Sign Up.

User enters valid name, email, phone number, password, confirm password.

User clicks Sign Up.

Expected The user is added to the database otherwise an appropriate error is given.

Result Pass

Date 01.03.2025

Test ID TC_1.3 – Sign Up

with Missing

Fields

Category Functional Severity Major

Objective Ensure an error is shown if any required fields are omitted.

Steps User clicks Sign Up.

User leaves at least one required field blank (e.g., phone or password).

User clicks Sign Up.

Expected Error message appears prompting the user to fill the missing field(s).

Result Pass

Date 01.03.2025

Test ID TC_1.4 – Sign Up

with Invalid Email

Category Functional Severity Major

Objective Confirm that an invalid email format is not accepted.

40

Steps User clicks Sign Up.

User enters an invalid email (e.g., “test@” or missing “@”).

User fills other fields correctly.

User clicks Sign Up.

Expected An error message is displayed (e.g., “Invalid email format”); account is not created.

Result Pass

Date 01.03.2025

Test ID TC_1.5 – Sign Up

with Password

Mismatch

Category Functional Severity Minor

Objective Ensure password and confirm password must match.

Steps User clicks Sign Up.

User enters a valid password in “Password” but a different value in “Confirm

Password.”

User clicks Sign Up.

Expected Error message indicates the passwords do not match; account is not created.

Result Pass

Date 01.03.2025

41

Test ID TC_1.6 – Sign Up

with Existing

Email

Category Functional Severity Major

Objective Check that the system prevents duplicate accounts with the same email.

Steps User clicks Sign Up.

User enters an email that already exists in the system.

User fills in other fields and clicks Sign Up.

Expected Error message “Email already exists” (or similar); account creation is blocked.

Result Pass

Date 01.03.2025

Test ID TC_2.1 – Log In

with Valid

Credentials

Category Functional Severity Major

Objective Ensure that users can log in with the correct email/password.

Steps User opens the extension.

User clicks Sign In.

User enters a valid email and password.

User clicks Sign In.

Expected User is redirected to the MainMainPage

Result Pass

Date 01.03.2025

42

Test ID TC_2.2 – Log In

with Invalid

Password

Category Functional Severity Major

Objective Verify incorrect passwords are rejected.

Steps User opens the extension.

User clicks Sign In.

User enters the correct email but an incorrect password.

User clicks Sign In.

Expected An error message is displayed (e.g., “Invalid password”); login fails.

Result Pass

Date 01.03.2025

Test ID TC_2.3 – Log In

with Non-Existent

Email

Category Functional Severity Major

Objective Check that users cannot log in using an unregistered email.

Steps User opens the extension.

User clicks Sign In.

User enters an email not found in the database.

User clicks Sign In.

Expected Error message “Email not found” (or similar) is displayed.

Result Pass

Date 01.03.2025

43

Test ID TC_2.4 – Log In

with Empty Fields

Category Functional Severity Major

Objective Ensure the system requires both email and password.

Steps User opens the extension, clicks Sign In.

User leaves email or password blank.

User clicks Sign In.

Expected System displays an error indicating missing credentials.

Result Pass

Date 01.03.2025

Test ID TC_3.1 – Standard

Logout

Category Functional Severity Major

Objective Ensure that clicking logout signs the user out.

Steps User clicks the logout icon.

Expected User is signed out and redirected to the login page (or sees a logged-out state).

Result Pass

Date 01.03.2025

44

Test ID TC_3.2 – Logout

via Inactivity

Category Functional Severity Minor

Objective Check if the system auto-logs out a user after inactivity.

Steps User logs in, then remains idle for the configured time limit.

Expected System logs the user out automatically, requiring re-login.

Result Pass

Date 01.03.2025

Test ID TC_4.1 – Analyze

a Valid Article

Page

Category Functional Severity Critical

Objective Verify that analyzing a valid news/article page works.

Steps User clicks Analyze Current Page.

Expected System displays reliability score, analysis summary, similar articles.

Result Pass

Date 01.03.2025

Test ID TC_4.2 – Analyze

a Non-Article Page

or Invalid Content

Category Functional Severity Major

Objective Ensure the system handles invalid pages

45

Steps User is on a page that is not a typical article (e.g., a blank page).

User clicks Analyze Current Page.

Expected System either shows an error (“Unable to analyze”) or minimal results.

Result Pass

Date 01.03.2025

Test ID TC_5.1 – Analyze

Valid URL

Category Functi… Severity Critical

Objective Verify user can input a URL to be analyzed with the same reliability features.

Steps User enters a valid URL in the input box.

User clicks Analyze URL.

Expected System displays reliability score, similar articles, etc.

Result Pass

Date 01.03.2025

Test ID TC_5.2 – Analyze

Invalid or Empty

URL

Category Functi… Severity Major

Objective Check system response to an invalid or no URL.

Steps User leaves the URL box empty or types a malformed URL (e.g., htp://notvalid).

User clicks Analyze URL.

46

Expected Error message prompts user that the URL is invalid, or to fill in the input box.

Result Pass.

Date 01.03.2025

Test ID TC_6 – View More

Details for Valid

Analysis

Category Functi… Severity Major

Objective Verify that clicking “Show more details” loads additional information about the

article.

Steps After the article is analyzed, the user clicks Show More Details.

Expected System shows extra details (stats, references, etc.).

Result Pass

Date 01.03.2025

Test ID TC_7.1 – Change

Plan to Premium

Category Functi… Severity Major

Objective Ensure a user can upgrade from free to premium.

Steps User clicks the profile icon.

User selects “Premium” plan.

Expected Plan changes to premium; user sees updated subscription status.

47

Result Pass

Date 01.03.2025

Test ID TC_7.2 – Change

Plan to Enterprise

Category Functi… Severity Major

Objective Verify a user can change from premium/free to enterprise.

Steps User clicks the profile icon.

User selects “Enterprise” plan.

Expected User subscription changes to enterprise plan.

Result Pass

Date 01.03.2025

Test ID TC_7.3 – Change

Plan to Free

Category Functi… Severity Major

Objective Check a user can revert back to free.

Steps User clicks the profile icon.

Selects “Free” plan.

Expected Subscription changes to free; possibly showing a downgrade confirmation.

Result Pass

48

Date 01.03.2025

Test ID TC_7.4 – Change

Plan with Payment

Failure

Category Functi… Severity Major

Objective See what happens if payment for a paid plan fails.

Steps User selects a paid plan.

Payment gateway returns a failure or declines the card.

Expected System notifies the user of payment failure; the plan remains unchanged.

Result Pass

Date 01.03.2025

Test ID TC_8.1 – Change

Password

Successfully

Category Functi… Severity Minor

Objective User can change their current password to a new one.

Steps User clicks the profile icon.

User selects Change Password.

User enters the new password and confirms it correctly.

User clicks Change Password button.

Expected Password updates; user sees success message.

49

Result Pass

Date 01.03.2025

Test ID TC_8.2 – Change

Password with

Mismatched

Confirmation

Category Functi… Severity Minor

Objective Ensure mismatched new passwords are detected.

Steps User enters a new password but a different confirmation password.

User clicks Change Password.

Expected Error message: “Passwords do not match.”

Result Pass

Date 01.03.2025

Test ID TC_8.3 – Change

Password with

Blank Fields

Category Functi… Severity Minor

Objective Check that all fields are required.

Steps User leaves the new password or confirm password field empty.

User clicks Change Password.

Expected Error message: “Please fill all required fields.”

50

Result Pass

Date 01.03.2025

Test ID TC_9 – View

Dashboard

Category Functi… Severity Major

Objective Check that clicking “Your Dashboard” shows correct stats.

Steps User logs in.

User clicks MainMenuPage → “Your Dashboard” (or Profile → Dashboard).

Expected Dashboard displays daily limit, # of articles analyzed, average reliability score,

total articles.

Result Pass

Date 01.03.2025

Test ID TC_10 – View

History

Category Functi… Severity Major

Objective Check that clicking “Your Dashboard” shows correct stats.

Steps User logs in.

User clicks MainMenuPage → “Your Dashboard” (or Profile → Dashboard).

Expected Dashboard displays daily limit, # of articles analyzed, average reliability score,

total articles.

51

Result Pass

Date 01.03.2025

Test ID TC_11 – Send

Report

Category Functi… Severity Major

Objective Confirm a user can file a “mistake” report.

Steps User clicks Report Icon or Report Mistake.

User selects “Mistake” as the report type.

User enters a message.

User clicks Send Report.

Expected Report is sent to admins.

Result Pass

Date 01.03.2025

Test ID TC_12.1 – Forgot

Password with

Valid Email

Category Functi… Severity Major

Objective Ensure the user can reset their password using a correct email and code.

Steps User clicks Sign In → Forgot Password link.

User enters their valid email and clicks Send Verification Code.

User receives the code by email, enters it, and sets a new password.

User confirms new password.

52

Expected Password is updated; user can log in with the new password.

Result Pass

Date 01.03.2025

Test ID TC_12.2 – Forgot

Password with

Unregistered Email

Category Functi… Severity Minor

Objective Verify the system rejects invalid/unregistered emails for password reset.

Steps User clicks Forgot Password.

User enters an email not in the system.

User clicks Send Verification Code.

Expected Error message: “Email not found” or similar.

Result Pass

Date 01.03.2025

Test ID TC_12.3 – Forgot

Password with

Invalid Verification

Code

Category Functi… Severity Major

Objective Check that an incorrect code is not accepted.

53

Steps User enters a verification code that is wrong or expired.

User tries to set a new password.

Expected Error message indicates invalid or expired code.

Result Pass

Date 01.03.2025

Test ID TC_12.4 – Forgot

Password with

Mismatched New

Passwords

Category Functi… Severity Major

Objective Ensure new password and confirm password must match.

Steps User enters a valid verification code.

User types a new password but a different confirm password.

User clicks Submit.

Expected Error message “Passwords do not match.”

Result Pass

Date 01.03.2025

Test ID TC_13 – View

Credibility after

Analyzing

Category Functi… Severity Critical

54

Objective User can see if a website is “credible,” “mixed,” or “uncredible.”

Steps User clicks Analyze Current Page or inputs URL.

After results load, user clicks More Details.

Expected System displays credibility status (“credible,” “mixed,” or “uncredible”).

Result Pass

Date 01.03.2025

Test ID TC_14.1 –

Similarity

Detection Module

Category Functional Severity Critical

Objective Verify the similarity detection module correctly identifies text similarity.

Steps Provide two identical text inputs to the module

Expected Output = 1 (identical texts).

Result Pass

Date 01.03.2025

Test ID TC_14.2 –

Similarity

Detection Module

Category Functional Severity Critical

Objective Verify the similarity detection module correctly identifies text similarity.

55

Steps Provide two completely different with no semantic similarity text inputs to the module.

Expected Output = 0 (no similarity).

Result Pass

Date 01.03.2025

Test ID TC_14.3 –

Similarity

Detection Module

Category Functional Severity Critical

Objective Verify the similarity detection module correctly identifies text similarity.

Steps Provide two partially similar text inputs to the module.

Expected Output = a value between 0 and 1 (partial similarity).

Result Pass

Date 01.03.2025

Test ID TC_15.1 –

Objectivity

Classification

Model

Category Functional Severity Critical

Objective Verify the objectivity classification model correctly classifies text as objective or

subjective.

Steps Provide a factual news article (e.g., "The population of New York is 8.5 million")..

56

Expected Output = "Objective".

Result Pass

Date 01.03.2025

Test ID TC_15.2 –

Objectivity

Classification

Model

Category Functional Severity Critical

Objective Verify the objectivity classification model correctly classifies text as objective or

subjective.

Steps Provide an opinion piece (e.g., "New York is the best city in the world").

Expected Output = "Subjective".

Result Pass

Date 01.03.2025

Test ID TC_16.1 –

Political Bias

Classification

Model

Category Functional Severity Critical

Objective Verify the political bias classification model correctly identifies bias as left, center, or

right.

57

Steps Provide a text with left-leaning political bias (e.g., "The government should increase

taxes on the wealthy to fund social programs").

Expected Output = "Left".

Result Pass

Date 01.03.2025

Test ID TC_16.2 –

Political Bias

Classification

Model

Category Functional Severity Critical

Objective Verify the political bias classification model correctly identifies bias as left, center, or

right.

Steps Provide a text with right-leaning political bias (e.g., "Lower taxes for businesses will

stimulate economic growth").

Expected Output = "Right".

Result Pass

Date 01.03.2025

Test ID TC_16.3 –

Political Bias

Classification

Model

Category Functional Severity Critical

58

Objective Verify the political bias classification model correctly identifies bias as left, center, or

right.

Steps Provide a politically neutral text

Expected Output = "Center".

Result Pass

Date 01.03.2025

Test ID TC_17.1 –

Reliability Score

Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

Steps Input a text article to the model and check if the model outputs a reliability score.

Expected A reliability score between 0-1 should be retrieved.

Result Pass

Date 01.03.2025

Test ID TC_17.2 –

Reliability Score

Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

59

Steps Input a fake news article and receive an output

Expected A reliability score between 0-0.5 should be retrieved.

Result Pass

Date 01.03.2025

Test ID TC_17.3 –

Reliability Score

Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

Steps Input a real news article and receive an output

Expected A reliability score between 0.5-1 should be retrieved.

Result Pass

Date 01.03.2025

Test ID TC_18.1 – Edge Case

Testing for Similarity

Detection Model

Category Edge … Severity Major

Objective Verify the similarity detection model handles edge cases correctly.

Steps Provide two texts with only stopwords (e.g., "the and is").

Expected Output = 1 (stopwords are considered identical)

60

Result Pass

Date 01.03.2025

Test ID TC_18.2 – Edge Case

Testing for Similarity

Detection Model

Category Edge … Severity Major

Objective Verify the similarity detection model handles edge cases correctly.

Steps Provide one text and an empty string as the second input.

Expected Output = 0 (no similarity with an empty string)

Result Pass

Date 01.03.2025

Test ID TC_19 – Edge Case

Testing for Objectivity

Classification Model

Category Edge … Severity Major

Objective Verify the objectivity classification model handles ambiguous or mixed texts.

Steps Provide a text that mixes facts and opinions (e.g., "The population of New York is 8.5

million, and it's the best city in the world").

Expected Output = "Subjective" (since the text contains opinions).

Result Pass

61

Date 01.03.2025

Test ID TC_20 – Edge Case

Testing for Political

Bias Classification

Model

Category Edge … Severity Major

Objective Verify the political bias classification model handles neutral or ambiguous texts.

Steps Provide a text with no political context (e.g., "The weather today is sunny").

Expected Output = "Center" (neutral).

Result Pass

Date 01.03.2025

Test ID TC_21 – Integration of

All Models

Category Integra… Severity Critical

Objective Verify all models work together seamlessly to provide a comprehensive fact-checking

output.

Steps Provide a news article as input.

Run the article through all models.

● Similarity detection

● Objectivity classification

● Political bias classification

● Reliability scoring

62

Expected Similarity detection output = value between 0 and 1.

Objectivity classification output = "Objective" or "Subjective".

Political bias classification output = "Left", "Center", or "Right".

Reliability scoring output = value between 0 and 1.

Result Pass

Date 01.03.2025

Test ID TC_22 – Claim

Extraction

Category Functional Severity Critical

Objective Ensure that claim extraction is complete

Steps Input a news article text.

Expected At least one claim must be extracted.

Result Pass

Date 01.03.2025

Test ID NFR-1 – Clear

Visual Indicators

Category Non-f… Severity Major

Objective Ensure color-coded scoring and political compass graphics are visible and

understandable.

Steps User opens an article analysis page in the extension.

63

Inspect that the reliability score is color-coded (e.g., green=credible,

yellow=mixed, red=uncredible).

Check for a political compass graphic or textual indicator.

Expected Colors, icons, or textual labels are clear and consistent

Result Pass

Date 01.03.2025

Test ID NFR-2 – Browser

Compatibility

Category Comp… Severity Major

Objective The system is accessible on all major Chromium browsers (Google Chrome,

Opera, Microsoft Edge and Brave) as well as Mozilla Firefox and Safari.

Steps Use the extension

Expected No broken layouts or overlapping elements.

All critical functionality remains accessible at different browsers.

Result Pass except for Safari.

Date 01.03.2025

Test ID NFR-3 – Mobile

UI Responsiveness

& Usability

Category Usability Severity Major

64

Objective Validate that the mobile app’s interface is optimized for smaller screens and

different orientations (portrait/landscape).

Steps Open the app on various device sizes (phone and tablet).

Navigate through menus, open analysis results, and check any interactive

elements (e.g., text fields, buttons).

(Optional) Rotate the device from portrait to landscape.

Expected No UI elements are cut off or overlapping.

Buttons/fields are appropriately scaled and easy to tap.

Navigation remains logical in both orientations.

Result Pass

Date 01.03.2025

Test ID PERF-1 –

Response Time for

Browser Extension

Category Perfor… Severity Critical

Objective Verify both browser extension and mobile app respond within acceptable time

limits for all user actions.

Steps Perform article analysis request using the browser extension.

Perform article analysis request using the mobile app.

Expected Response time ≤ 5 seconds for both browser extension and mobile app.

Result Pass

Date 01.03.2025

65

Test ID M-1 – Complete

Mobile App

Category Functi… Severity Critical

Objective Ensure that core features (article analysis, reliability scoring, political compass,

account management, etc.) are available and function correctly on the mobile app,

matching the desktop extension.

Steps Launch the mobile app on a phone or tablet.

Log in.

Access and use each major feature (e.g., article analysis, viewing reliability

scores, changing subscription plan).

Expected All primary features that exist on the browser extension are also present in the

mobile app and function without major differences or missing steps.

Result Pass

Date 01.03.2025

Test ID M-2 – Log in to

the Mobile App

Category Functi… Severity Critical

Objective Ensure that login works on the mobile application, and the token is generated.

Steps Open the app.

Enter the email and the password.

Press the login button.

Expected User is navigated to the homepage.

Token is generated.

66

Result Pass

Date 08.03.2025

Test ID M-3 – Log out of

the Mobile App

Category Functi… Severity Critical

Objective Ensure that the user logs out upon token expiry.

Steps Open the app.

Log in.

Wait for 1 hour (token expiry).

Expected User is automatically logged out.

Result Pass

Date 08.03.2025

67

Test ID M-5 – More

Details page of

Article Analysis in

Mobile App

Category Functi… Severity Critical

Objective Ensure that the user is automatically redirected to the article page after they

analyze the article on the mobile app.

Steps Open the app.

Login

6. Maintenance Plan and Details

To ensure CheckMate remains accurate, secure, and efficient over time, we have developed a

comprehensive maintenance strategy addressing all system components. Our plan focuses on

keeping models, dependencies, and databases updated while continuously incorporating user

feedback for ongoing improvement.

6.1 Model Maintenance

Our machine learning models require regular updates to maintain and improve their accuracy:

● Regular Retraining Schedule: We will retrain our core machine learning models

(subjectivity classifier, political bias classifier, and reliability score model) on a monthly

basis to incorporate new data patterns and prevent model drift. This process will use our

continuously expanding dataset of analyzed articles and user feedback.

● API Version Management: As new versions of Google Text Embedding API and

TensorFlow-based BERT models are released, we will implement a two-phase integration

approach:

1. Testing in a controlled environment to measure performance impacts

68

Press the ‘Search’ button that is on the bottom-right of the page.

Enter the article url.

Press the ‘Analyze’ button.

Expected User is navigated to the article page.

Result Pass

Date 08.03.2025

2. Gradual rollout to production, ensuring backward compatibility

● Performance Benchmarking: We will maintain a curated test dataset of verified articles

with known reliability characteristics to validate model performance after each update

cycle.

6.2 Dependency Management

The software dependencies critical to our system will be routinely monitored and updated:

● Backend Framework Updates: Our Flask, SQLAlchemy, and other Python

dependencies will undergo monthly update assessments based on the project's

compatibility matrix. Version upgrades will be tested in a staging environment before

deployment.

● Browser Compatibility: We will update our extension to always be in line with new

browser updates, ensuring the application will be stable across multiple browsers.

● Library Version Control: A dependency lockfile will be maintained to ensure consistent

deployments, with weekly automated checks for security vulnerabilities using tools like

safety and Snyk.

6.3 Database Maintenance

Our PostgreSQL database requires regular optimization to manage the growing volume of data:

● Data Retention Policy: We will implement a tiered data retention strategy:

○ Analysis results will be maintained for 12 months

○ User search history for 6 months

○ Raw extraction data for 3 months

● Index Optimization: Query patterns will be analyzed quarterly to optimize database

indexes, with special attention to the article_searches and similar_articles tables that

experience the highest query volume.

69

● Schema Evolution: As new features are developed, database migrations will be deployed

during scheduled maintenance windows using a version-controlled migration framework

to ensure data integrity.

6.4 User Feedback Integration

User feedback is a critical component for improving system accuracy:

● Feedback Collection: The report submission feature will categorize user feedback into

specific improvement areas (reliability scoring issues, bias detection problems, similarity

calculation errors).

● Weight Adjustment: Based on aggregated feedback patterns, we will adjust the weights

in our reliability model quarterly after statistical validation of proposed changes.

● Validation Process: All modifications resulting from user feedback will undergo A/B

testing with a subset of production traffic before full deployment to verify improvements.

6.5 System Monitoring

Proactive monitoring will help identify and resolve issues before they impact users:

● Performance Metrics: We will track key performance indicators including:

○ Average response time for article analysis

○ Model inference latency

○ API call success rates

○ Error frequency by component

● Alerting System: Automated alerts will be configured for anomalies in system

performance, with escalation paths defined for critical issues.

● Usage Analytics: Regular reports will analyze user interaction patterns to identify

high-traffic periods and optimize resource allocation.

6.6. Scheduled Maintenance

70

Regular maintenance activities will be coordinated to minimize disruption:

● Maintenance Windows: Routine updates will be scheduled during periods of lowest user

activity, typically late night or early morning hours.

● Update Deployment: A canary deployment approach will be used for significant

changes, with initial rollout to a small percentage of traffic before full implementation.

● Communication: Users will be notified of scheduled maintenance through the extension

interface and email (for registered users) with appropriate lead time.

6.7. Documentation Updates

Maintaining accurate documentation is essential for system sustainability:

● Internal Documentation: Technical documentation will be updated in lockstep with

code changes to ensure development knowledge is preserved.

● Release Notes: Each maintenance cycle will be accompanied by detailed release notes

explaining improvements, bug fixes, and any changes to user experience.

● Knowledge Base: A public-facing knowledge base will be maintained to answer

common questions and provide transparency about system operation.

Through this structured maintenance approach, we aim to continuously improve CheckMate's

accuracy and performance while maintaining system stability and user trust. Each component of

the plan includes clear ownership, timelines, and success metrics to ensure effective execution.

71

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design

Effect Level Effect

Public Health 1 Minimal — Misinformation can indirectly influence health behavior

in some news topics.

Public Safety 2 Low — In crisis events, false information could lead to panic or

misinformed reactions.

Public Welfare 3 Moderate — Helps combat disinformation that may distort civic

awareness and social trust.

Global Factors 5 High — Requires internationalization, multi-language NLP support,

and cross-cultural bias handling.

Cultural Factors 4 Significant — Needs culturally sensitive phrasing, adaptable UI, and

localized moderation.

Social Factors 5 High — Must be transparent in AI decision-making to promote user

trust and fight polarization.

Environmental

Factors

3 Medium — Should optimize cloud inference and embedding usage to

minimize carbon footprint.

Economic Factors 6 Very High — Critical to keep deployment costs low (e.g.,

$1/user/month) for broad accessibility.

72

7.1.1 Constraints

7.1.1.1 Implementation Constraints

● The browser extension is compatible with all major Chromium browsers (Google Chrome,

Opera, Microsoft Edge and Brave) as well as Mozilla Firefox [5].

● GitHub and Jira are used to track the deadlines, issues, and the codebase.

● HTML and CSS frameworks are used for frontend development.

● Python is used for machine learning (ML) development and backend development.

● PostgreSQL hosted by Amazon RDS server is used for the database system.

● Google Cloud server is used for ML model and backend deployment.

7.1.1.2 Economic Constraints

● Our project requires several external libraries, frameworks, and models. Therefore, our group

has opted to use as many open-source frameworks as possible.

● Google Vision API [14], Google Custom Search API [11], ML model and backend

deployment on Amazon EC2 servers use a paid plan after the free tier parameters are

reached.

7.1.1.3 Ethical Constraints

● All interactions and data collected from the users are handled within data protection law

General Data Protection Regulation (GDPR).

● The users are informed about the application's limitations and scope before registration.

● The system utilizes personal data and storing said data in the database hosted on Amazon

RDS.

● No unnecessary user data will be collected.

● The system will clearly communicate to the user about its shortcomings.

● The system will clearly communicate reasons for reliability scores of the news articles and

the reasons for credibility scores for news sources.

● The system will suggest trustworthy sources to the user about the news article that they are

searching for.

73

● The system is designed to ensure objectivity and fairness, actively compensating for any

biased outcomes to provide accurate labeling of news articles and news sources.

7.1.1.4 Language Constraints

● The system will work on news articles and new sources in English because of the lack of

labeled Turkish news article datasets.

7.1.2 Standards

● The system will abide by the European Fact-Checking Standards Network (EFCSN) [16] as a

benchmark in fact-checking news articles.

● The system will abide by Google Cloud Vision API Terms of Service, Bing Search API

License Agreement, and other third-party API usage policies.

● The system will abide to General Data Protection Regulation (GDPR) [17]

7.2 Ethics and Professional Responsibilities

The CheckMate project team is committed to upholding ethical standards and professional

responsibilities. Key considerations include:

● Protecting user privacy and data security in compliance with GDPR and other relevant

regulations.

● Maintaining transparency about the system's capabilities, limitations, and potential

biases.

● Ensuring the credibility assessments are fair, unbiased, and not used to suppress

legitimate political views.

● Addressing user concerns and feedback in a timely and respectful manner.

● Continuously improving the system's accuracy and reliability through rigorous testing

and updates.

74

7.3 Teamwork Details

7.3.1 Contributing and functioning effectively on the team to establish goals, plan

tasks, and meet objectives

Our team collaborates using a combination of Agile-inspired methodologies, structured task

management, and frequent communication channels to ensure that everyone contributes

effectively to the project:

7.3.1.1 Project Management with JIRA

We use JIRA as our primary tool for planning and tracking tasks. Each sprint is broken down

into subtasks, which are then assigned to individual team members. JIRA’s board view provides

transparency into task status (To Do, In Progress, Done) and helps us monitor deadlines,

prioritize workload, and spot any bottlenecks.

7.3.1.2 Regular Communication and Meetings

We maintain a WhatsApp group for rapid, day-to-day communication, allowing team members

to quickly share updates, ask questions, and coordinate ad-hoc tasks. In addition to ongoing

online communication, we hold three weekly meetings to discuss progress, align on upcoming

goals, and resolve any challenges. .

7.3.1.3 Role Division and Collaboration

Batu and Pelin were responsible for architecting and implementing the backend infrastructure of

CheckMate. Their work included:

● Designing and developing RESTful APIs using Flask, ensuring consistent, secure, and

scalable endpoints for frontend communication.

● Implementing JWT-based authentication and route protection, as well as email

verification logic.

● Managing database schema design and optimization using SQLAlchemy with a

PostgreSQL backend.

75

● Developing modules for article scraping, similarity computation, domain credibility

validation, and result aggregation.

● Orchestrating API calls to external services (e.g., Google Custom Search, Vertex AI) and

handling concurrency using ProcessPoolExecutor.

● Ensuring robust error handling, transaction rollbacks, and performance tuning of core

endpoints.

Ayberk led the development of all user-facing components, including:

● Designing and implementing the browser extension UI, compatible with Chrome, Edge,

and Firefox.

● Building the mobile application using CapacitorJS, supporting both iOS and Android

platforms.

● Integrating frontend components with backend APIs, handling asynchronous data

fetching, token management, and real-time UI updates.

● Implementing user interaction features such as login/registration, result visualization,

color-coded reliability indicators, and profile/dashboard management.

● Ensuring a responsive and accessible user experience across platforms through structured

component-based design.

Ipek and Efe developed and deployed the core intelligence behind CheckMate’s analysis

pipeline. Their responsibilities included:

● Training and fine-tuning models for:

○ Political Bias Classification using Transformer-based architectures.

○ Text and Title Objectivity Analysis via custom RNNs and subjectivity scoring

techniques.

○ Reliability Scoring using a Multi-Layer Perceptron (MLP) built with scikit-learn.

● Engineering input features, such as similarity metrics, extremism scores, and grammatical

quality indicators.

● Deploying models as independent FastAPI microservices on Google Cloud Run, ensuring

low-latency inference at scale.

76

● Integrating Google Vertex AI for text embeddings.

● Conducting evaluation, model validation, and system integration testing to ensure

consistency with backend requirements.

Despite these primary roles, we encourage knowledge sharing and cross-functional support. If

someone encounters a roadblock, teammates from any domain can step in to offer insights.

7.3.1.4 Coordination and Accountability

Each member is responsible for updating JIRA tasks with progress notes and shifting status as

they move from development to testing. Even if there is a role division each member gets to

work on a different team if another team needs their help.

By combining these practices, our team maintains clear communication, well-defined

responsibilities, and a supportive environment that enables us to efficiently develop CheckMate’s

backend, frontend, and machine learning models.

7.3.2 Helping creating a collaborative and inclusive environment

Each team member takes the lead on a specific core component, but that doesn't prevent us from

assisting one another with coding challenges. Whenever someone encounters an issue while

coding we all work on it together by sharing the code with the issue among each other, ensuring

that everyone is informed and can analyze the code to help find a solution.

Additionally, we use WhatsApp and Google meet to discuss problems and share our planned

solutions, keeping the entire team updated. We recognize that this is a collaborative project, and

although tasks are divided among us, we all share the responsibility of delivering a fully

developed application.

7.3.3 Taking lead role and sharing leadership on the team

Our team embraces a domain-based leadership model, where individuals lead when they have

expertise in a specific area. For example, someone well-versed in mobile app development

guided that portion of the project, while another person with deep ML knowledge led model

77

selection and training. However, all major decisions still go through a collaborative process,

ensuring that everyone’s perspectives are considered.

Domain leads also act as mentors, sharing knowledge and providing hands-on guidance to team

members less familiar with their area of expertise. This approach fosters ownership, as each

member takes initiative in their specialty. It also keeps us agile when new challenges arise

(optimizing the ML pipeline), the respective domain lead steps forward, with others offering

support.

Overall, this flexible leadership style ensures that each person can leverage their strengths, while

the team benefits from a shared sense of responsibility and balanced decision-making.

7.3.4 Meeting objectives

● Three-day weekly cycle: We meet every Tuesday, Thursday and Saturday to plan, build

and wrap up our goals.

● Set clear targets: At the start of each meeting we pick 1–3 concrete objectives (“Add

reliability endpoint,” “Improve UI response time”).

● Work together: Tasks get split on the spot and we pair-program or troubleshoot in real

time—no one works in isolation.

● Quick demo & sign-off: By the end of the daily session we do a 5-minute demo to verify

each objective is complete, then close the loop until the next meeting.

7.4 New Knowledge Acquired and Applied

Over the course of building CheckMate, our team developed and applied a wide range of

practical technical skills spanning backend development, web scraping, cloud integrations,

performance optimization, and full-stack connectivity. Below is a breakdown of key

competencies we acquired and how we utilized them in the system:

7.4.1 Flask & API Design

We gained deep proficiency in Flask and modern RESTful API design patterns. Our backend

services were structured around clear route definitions, robust request validation, and secure

78

access. We implemented JWT-based authentication to protect sensitive endpoints and introduced

CORS handling to support cross-origin requests from both browser extensions and mobile

clients. All API responses were returned in well-structured JSON format, and we implemented

consistent HTTP error handling with descriptive status codes and user-friendly error messages.

We also improved our ability to log exceptions and roll back transactions cleanly, ensuring

backend reliability and transparency.

7.4.2 Web Scraping Techniques

To power our article analysis engine, we built a resilient web scraping pipeline combining

BeautifulSoup-based heuristics with headless browser automation using

undetected-chromedriver. This dual-layer approach allowed us to extract content from both static

and dynamically rendered pages. We refined our logic to identify and isolate the main article

content while filtering out ads, navigation headers, thumbnail blocks, and unrelated boilerplate

elements. The scraper intelligently prioritized structured HTML elements and fallback metadata,

making it highly adaptable across different publisher formats.

7.4.3 Cloud & AI Integrations

We integrated several external services to enable CheckMate’s AI-powered features. This

included connecting to the Google Custom Search API for reverse article lookup, Google Vertex

AI for semantic embeddings, and Google Cloud Vision API (early prototype) for experimental

image-based content validation. These integrations taught us how to correctly structure API

payloads, interpret complex nested JSON responses, and handle edge cases such as timeouts, rate

limits, and malformed data. We learned how to integrate asynchronous API calls into a real-time

inference pipeline with meaningful error handling.

7.4.4 Parallelism & Performance Optimization

Performance was crucial to support near-instant feedback for users. We employed Python’s

ProcessPoolExecutor to parallelize the scraping and analysis of up to 10 reverse-searched

articles, significantly reducing total response time. We also implemented logic to clamp, validate,

and normalize the similarity scores to ensure they stayed within acceptable backend ranges. This

79

attention to numerical stability prevented scoring anomalies and improved the reliability of

downstream inferences. We learned how to balance concurrency with system resource

constraints and maintain consistent throughput under load.

7.4.5 Database & ORM Proficiency

We deepened our knowledge of SQLAlchemy, focusing on relational mapping, ORM

relationships, and transactional workflows. We implemented one-to-many and many-to-one

relationships to link users, articles, and analysis logs effectively. We also resolved practical

issues like VARCHAR truncation, default value handling, and data type mismatches. Our

backend services supported bulk inserts and batch updates, helping us maintain performance and

avoid redundant computation. We also developed logic to map domain names to credibility

values stored in the trusted_websites table, enhancing source validation.

7.4.6 Frontend–Backend Integration

We established seamless communication between the backend Flask API and frontend clients,

especially our Chrome extension. We used fetch() for API calls, maintained session state with

localStorage, and dynamically updated the DOM to display real-time analysis results. We added

user-friendly elements like color-coded reliability scores, tooltips, and expandable breakdowns to

communicate credibility, bias, objectivity, and grammar insights. This full-stack wiring gave us

hands-on experience designing data flows between disparate components and managing

cross-platform consistency.

7.4.7 DevOps & Resilience Engineering

To support long-term maintainability, we learned key DevOps principles, including environment

management, observability, and graceful degradation. We managed sensitive credentials and API

keys using python-dotenv, enforced retry logic on unstable external services, and introduced

timeouts and fallback responses to prevent the system from crashing during third-party outages.

Logging was centralized and categorized to differentiate critical failures from recoverable

warnings, making debugging and post-mortem analysis more efficient.

80

8. Conclusion and Future Work

As we look ahead beyond the initial scope of our senior design project, we recognize the vast

potential for expanding CheckMate’s capabilities to deliver even deeper insights into news

content. Two promising directions we have already begun to explore are visual analysis

integration and the implementation of Retrieval-Augmented Generation (RAG) [23] for

advanced article summarization and title assessment.

Firstly, the addition of visual analysis will allow CheckMate to assess the credibility and

emotional impact of images embedded within articles. Since visual media plays a significant role

in shaping user perception and can often be manipulated to mislead or exaggerate, this

enhancement will provide users with a more holistic understanding of article framing. By

integrating image classification, facial expression analysis, and reverse image search

pipelines—potentially leveraging services like Google Cloud Vision API—we aim to flag

emotionally charged or out-of-context visuals that may distort narrative neutrality.

Secondly, implementing a RAG-based summarization module represents a major advancement in

how CheckMate evaluates content. Unlike traditional extractive summarization methods, RAG

enables us to dynamically query a curated evidence corpus and generate summaries that

contextualize the article in relation to broader verified knowledge. This will not only improve the

accuracy and informativeness of article summaries, but also significantly enhance title

objectivity analysis, as titles can then be compared against a fact-aware, contextually grounded

summary to detect sensationalism or misrepresentation. RAG will also strengthen our reverse

search interpretation by grounding retrieved content more explicitly in known facts.

These forward-looking enhancements reinforce our vision for CheckMate as not just a

fact-checking tool, but a comprehensive information literacy platform. By expanding into

multimodal analysis and retrieval-aware language generation, we aim to empower users with

richer, more nuanced assessments of online news, making CheckMate an indispensable

companion in the pursuit of truth in digital media.

81

9. Glossary

API: An API, or Application Programming Interface, is a collection of rules and protocols that

allow software applications to interact and share data, features, or functionality. API

communication can be understood as an exchange of requests and responses between a client and

a server. The client is the application sending the request, while the server processes the request

and sends back a response. The API acts as the intermediary, facilitating this connection between

the two. [18]

NLP: Natural Language Processing (NLP) is a branch of computer science and artificial

intelligence focused on enabling computers to comprehend human language. It combines

computational linguistics, which examines the mechanics of language, with statistical methods,

machine learning, and deep learning models. These techniques equip computers to analyze and

interpret text or speech data, understanding their overall meaning, as well as the speaker's or

writer's intentions and emotions. [19]

ML: Machine learning (ML) is a branch of artificial intelligence (AI) and computer science that

focuses on using data and algorithms to enable AI to imitate the way that humans learn,

gradually improving its accuracy. [20]

URL: The location of a webpage or file on the Internet. [21]

MLP: Multilayer perceptron (MLP) is a type of artificial neural network used in machine

learning to make predictions. It is made up of layers of connected units called neurons. These

neurons are arranged in three main parts: an input layer that receives the data, one or more

hidden layers that process the data, and an output layer that gives the result. Each neuron passes

information to the next layer after applying a simple calculation, often using a function that adds

non-linearity. MLPs learn by adjusting the strength of the connections between neurons. This is

done during training using a method called backpropagation, which helps the network reduce

errors and make better predictions over time. [22]
 RAG: Retrieval-Augmented Generation is a is a system that improves an AI model's

effectiveness by linking it to additional reference databases. [23]

82

10. References

[1] Meta, "How fact-checking works," Meta Transparency Center. [Online]. Available:

https://transparency.meta.com/en-us/features/how-fact-checking-works/. [Accessed:

16-Nov-2024].

[2] X Help Center, "Community Notes," X, [Online]. Available:

https://help.x.com/en/using-x/community-notes. [Accessed: Mar. 8, 2025].

[3] Knight Science Journalism, "Fact-checking science journalism: How to make sure

your stories are true," KSJ Handbook. [Online]. Available:

https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories

-are-true/the-fact-checking-process/. [Accessed: 16-Nov-2024].

[4] J. Waterson, "Internet overtakes TV as UK’s most popular news source for first time,"

The Guardian, 10-Sep-2024. [Online]. Available:

https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-new

s-source-first-time. [Accessed: 16-Nov-2024].

[5] Mihir J, “Browser Comparison Finale Chromium-based Browsers”, Medium.

[Online].

Available:https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based

-browsers-2b6063e74165. [Accessed: 16-Nov-2024].

[6] Werkzeug Security. “Werkzeug,” PyPI. [Online]. Available:

https://pypi.org/project/Werkzeug/. [Accessed: 08-Nov-2024].

[7] T. Tiangolo, “FastAPI: Modern, Fast (high-performance), web framework for building
APIs with Python,” [Online]. Available: https://fastapi.tiangolo.com/. [Accessed:
08-Mar-2025].

[8] Google Cloud, “Vertex AI Embeddings API,” [Online]. Available:

83

https://transparency.meta.com/en-us/features/how-fact-checking-works/
https://help.x.com/en/using-x/community-notes
https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories-are-true/the-fact-checking-process/
https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories-are-true/the-fact-checking-process/
https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-news-source-first-time
https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-news-source-first-time
https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based-browsers-2b6063e74165
https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based-browsers-2b6063e74165
https://pypi.org/project/Werkzeug/

https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/overview. [Accessed:
08-Mar-2025].

[9] Amazon Web Services, "Amazon RDS," AWS, [Online]. Available:

https://aws.amazon.com/rds/?nc1=h_ls. [Accessed: Mar. 8, 2025].

[10] “Cloud Run,” Google Cloud. https://cloud.google.com/run?hl=tr [Accessed: Apr.

10, 2025].

[11] Google Developers, "Custom Search JSON API introduction," Google, [Online].

Available: https://developers.google.com/custom-search/v1/introduction. [Accessed: Mar.

8, 2025].

[12] J. Thorne et al., "Automated fact-checking: Tasks, datasets, models, and challenges,"

arXiv preprint arXiv:2203.05659, 2022. [Online]. Available:

https://doi.org/10.48550/arXiv.2203.05659. [Accessed: Mar. 8, 2025].

[13]“Checkmate Survey / Checkmate Anketi,” Google Docs.
https://docs.google.com/forms/d/e/1FAIpQLScg1iBTcjGqeX3B-hX12y0whNyyko6CfgK
yduYR8g2Dtp_zOQ/viewform?usp=dialog

[14] Google Cloud, "Cloud Vision API," Google Cloud, [Online]. Available:

https://cloud.google.com/vision?hl=tr. [Accessed: Mar. 8, 2025].

[15] J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global Vectors for Word
Representation," In EMNLP, 2014. [Online]. Available:
https://nlp.stanford.edu/projects/glove/. [Accessed: 08-Mar-2025].

[16] EFCSN, "Code of standards," EFCSN. [Online]. Available:

https://efcsn.com/code-of-standards/. [Accessed: 16-Nov-2024].

84

https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/overview
https://aws.amazon.com/rds/?nc1=h_ls
https://cloud.google.com/run?hl=tr
https://developers.google.com/custom-search/v1/introduction
https://doi.org/10.48550/arXiv.2203.05659
https://docs.google.com/forms/d/e/1FAIpQLScg1iBTcjGqeX3B-hX12y0whNyyko6CfgKyduYR8g2Dtp_zOQ/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScg1iBTcjGqeX3B-hX12y0whNyyko6CfgKyduYR8g2Dtp_zOQ/viewform?usp=dialog
https://cloud.google.com/vision?hl=tr
https://nlp.stanford.edu/projects/glove/
https://efcsn.com/code-of-standards/

[17] IBM, “What is GDPR?”, IBM. [Online]. Available:

https://www.ibm.com/cloud/compliance/gdpr-eu. [Accessed: 25-Feb-2025].

[18] Wikipedia contributors, “API,” Wikipedia, Apr. 07, 2025.

https://en.wikipedia.org/wiki/API [Accessed: 25-Apr-2024].

 [19] IBM, “Natural language processing,” What is NLP (natural language processing)?,

Apr. 17, 2025. https://www.ibm.com/think/topics/natural-language-processing.

[Accessed: 25-Apr-2024].

 [20] IBM, “Machine Learning,” What is machine learning?, Apr. 17, 2025.
https://www.ibm.com/think/topics/machine-learning. [Accessed: 25-Apr-2024].

 [21] Google, "URL," Google Support. [Online]. Available:
https://support.google.com/google-ads/answer/14095?hl=en. [Accessed: 16-Nov-2024].

[22] Almeida, Luis B (2020) [1996]. "Multilayer perceptrons". In Fiesler, Emile; Beale,

Russell (eds.). Handbook of Neural Computation. CRC Press. pp. C1-2.

[23] IBM, “What is retrieval-augmented generation?,” IBM Think Topics, 2023. [Online].

Available: https://www.ibm.com/think/topics/retrieval-augmented-generation. [Accessed:

25-Apr-2025]

85

https://www.ibm.com/cloud/compliance/gdpr-eu
https://en.wikipedia.org/wiki/API
https://www.ibm.com/think/topics/natural-language-processing
https://www.ibm.com/think/topics/machine-learning
https://support.google.com/google-ads/answer/14095?hl=en
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429142772-60/multilayer-perceptrons-luis-almeida
https://www.taylorfrancis.com/books/edit/10.1201/9780429142772/handbook-neural-computation-emile-fiesler-russell-beale?refId=fef0cae0-bd6d-4895-accc-744e0e281a0f&context=ubx
https://www.ibm.com/think/topics/retrieval-augmented-generation

86

	
	1. Introduction
	2. Requirements Details
	2.1 Functional Requirements
	2.2 Non-Functional Requirements
	2.2.1 Usability
	2.2.2 Reliability
	2.2.3 Transparency
	2.2.4 Performance
	2.2.5 Scalability
	2.2.6 Marketability
	2.2.7 Extendibility
	2.2.8 Security
	2.2.9 Maintainability
	2.2.10 Flexibility

	3. Final Architecture and Design Details
	3.1 Overview
	3.1.1 External Services
	3.1.2 Core Analyzers
	3.1.3 Data & Databases
	3.1.4 Score Calculation

	3.2 Subsystem Decomposition
	Backend System Decomposition Diagram
	Browser Extension Frontend System Decomposition Diagram
	Mobile App Frontend System Decomposition Diagram
	3.2.1 Frontend Client Layer (Google Cloud Run)
	3.2.2 Backend Flask Layer (Google Cloud Run)
	3.2.3 Model Services Layer (Google Cloud Run)
	3.2.4 External APIs Layer (Google Cloud Run)
	3.2.5 Interactions Between Layers

	
	3.3 Hardware/Software Mapping
	3.4 Class Diagrams
	3.4.1 Browser Extension Frontend Class Diagram
	3.4.2 Backend Class Diagram

	3.5 Access Control and Security
	3.6 Subscription Management Module

	4. Development/Implementation Details
	4.1 Frontend
	4.1.1 Application Shell & Navigation
	4.1.2 Authentication & Signup
	4.1.3 Email Verification & Password Reset
	4.1.4 Article Analysis & Results
	4.1.5 Reporting Mistakes (report.js)
	4.1.6 Search History (history-script.js)
	4.1.7 User Profile & Subscription
	4.1.8 Dashboard (dashboard.js)

	4.2 Backend
	4.2.1 Dependencies & Configuration
	4.2.2 Data Models & Database Initialization
	4.2.3 Article Extraction & Website Credibility
	4.2.4 Application Factory & Extensions
	4.2.5 Authentication & Authorization
	4.2.6 Core Fact-Checking Endpoint: /scrap_and_search
	4.2.7 Supplementary Endpoints

	4.3 Models
	4.3.1 Technology Stack and Deployment Environment
	4.3.2 API Exposure
	4.3.3 Subjectivity Classifier
	4.3.4 Political Bias Classifier
	4.3.5 Reliability Score Model
	4.3.5.1 Preprocessing and Feature Engineering:
	4.3.5.2 Model:

	5. Test Cases and Results
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	6. Maintenance Plan and Details
	6.1 Model Maintenance
	6.2 Dependency Management
	6.3 Database Maintenance
	6.4 User Feedback Integration
	6.5 System Monitoring
	6.6. Scheduled Maintenance
	6.7. Documentation Updates

	7. Other Project Elements
	7.1. Consideration of Various Factors in Engineering Design
	7.1.1 Constraints
	7.1.1.1 Implementation Constraints
	7.1.1.2 Economic Constraints
	7.1.1.3 Ethical Constraints
	7.1.1.4 Language Constraints

	7.1.2 Standards

	7.2 Ethics and Professional Responsibilities
	7.3 Teamwork Details
	7.3.1 Contributing and functioning effectively on the team to establish goals, plan tasks, and meet objectives
	7.3.1.1 Project Management with JIRA
	7.3.1.2 Regular Communication and Meetings
	7.3.1.3 Role Division and Collaboration
	7.3.1.4 Coordination and Accountability

	7.3.2 Helping creating a collaborative and inclusive environment
	7.3.3 Taking lead role and sharing leadership on the team
	7.3.4 Meeting objectives

	7.4 New Knowledge Acquired and Applied
	7.4.1 Flask & API Design
	7.4.2 Web Scraping Techniques
	7.4.3 Cloud & AI Integrations
	7.4.4 Parallelism & Performance Optimization
	7.4.5 Database & ORM Proficiency
	7.4.6 Frontend–Backend Integration
	7.4.7 DevOps & Resilience Engineering

	8. Conclusion and Future Work
	9. Glossary
	10. References

