

Bilkent University
Department of Computer Engineering

Senior Design Project

T2426 - CheckMate

Detailed Design Report

Ayberk Berat Eroğlu - 22103675

Alp Batu Aksan - 22103246

Pelin Öner - 22102409

İpek Sönmez - 22103939

Efe Tuna Can - 22102127

Supervisor: Cevdet Aykanat

1. Introduction...3
1.1 Purpose of the System.. 3
1.2 Design Goals...4

1.2.1 Usability...4
1.2.2 Reliability.. 4
1.2.3 Transparency..4
1.2.4 Performance...4
1.2.5 Scalability.. 5
1.2.6 Marketability..5
1.2.7 Extendibility.. 5
1.2.8 Security.. 6
1.2.9 Maintainability...6
1.2.10 Flexibility...6
1.2.11 Aesthetics...6

1.3 Definitions, acronyms, and abbreviations.. 6
1.4 Overview...7

2. Current Software Architecture..8
2.1 Manual Competitors... 8
2.2 Automated Competitors..9
2.3 Limitations of Current Solutions.. 9

3. Proposed Software Architecture..10
3.1 Overview...10

3.1.1. External Services.. 10
3.1.2. Core Analyzers... 10
3.1.3. Data & Databases..11
3.1.4. Score Calculation..12

3.2 Subsystem Decomposition..13
3.2.1 Client Layer... 13
3.2.2 Backend Logic Layer (AWS).. 14
3.2.3 External APIs Layer.. 14
3.2.4 Interactions Between Layers..14

3.3 Hardware/software mapping...15
3.4 Access control and security.. 16

4. Subsystem Services... 16
4.1 Client Subsystem.. 16

4.1.1 Components of the Client Subsystem..17
4.2 AWS Subsystem... 18

4.2.1 Components of the AWS Subsystem... 18
4.3 External APIs Subsystem... 19

4.3.1 Components of the External APIs Subsystem... 19
5. Test Cases...20
6. Consideration of Various Factors in Engineering Design...41

6.1 Constraints.. 41
1

6.2 Standards...42
7. Teamwork Details... 43

7.1 Contributing and functioning effectively on the team.. 43
7.2 Helping creating a collaborative and inclusive environment... 44
7.3 Taking lead role and sharing leadership on the team..44

8. References..45

2

1. Introduction

1.1 Purpose of the System
In an era characterized by the rapid dissemination of misinformation, ensuring the accuracy

and reliability of online content has become a critical challenge. Fact-checking remains

predominantly a manual process, relying on human experts to investigate claims and verify

their authenticity. For instance, Meta, the parent company of Facebook and Instagram, employs

human fact-checkers to assess the credibility of online content [1]. Similarly, Twitter (now X)

utilizes Community Notes, a crowdsourced system that aggregates contextual insights and

fact-checks based on user contributions [2]. However, these approaches are often insufficient to

address the vast volume of information circulating on digital platforms, as manual

fact-checking is both time-intensive and resource-demanding [3].

CheckMate, an artificial intelligence (AI) powered browser extension and mobile application

designed to automate fact-checking, multimedia verification, political bias detection, and

subjectivity analysis. By leveraging machine learning (ML) techniques, CheckMate aims to

provide a more efficient and scalable solution for misinformation detection. As the internet

continues to emerge as the dominant news source—surpassing traditional media in countries

such as the United Kingdom [4]—the integration of automated verification tools across major

news platforms is essential for mitigating the spread of false information.

CheckMate systematically evaluates news articles and assigns a reliability score based on

multiple factors. Using natural language processing (NLP), it detects biased, subjective

language and analyzes political bias, incorporating these findings into the reliability

assessment. Additionally, CheckMate cross-references information with other sources via

search Application Programming Interfaces (APIs) to identify confirmatory or contradictory

evidence.

Metadata, including the publication source, is also analyzed to assess credibility. If a source

has a history of publishing misinformation, exhibits political bias, or consistently employs

subjective language, CheckMate adjusts the source’s credibility score accordingly, which

contributes to the overall reliability score of the article. Furthermore, CheckMate performs

reverse image searches to detect inconsistencies, verifying whether visuals have been

previously used in different contexts.

3

Upon completing its analysis, CheckMate presents the reliability score along with a rationale,

highlighting factors such as high political bias, inconsistencies in information, or

contradictions with reputable sources.

1.2 Design Goals

1.2.1 Usability
● The system provides an intuitive and user-friendly interface, allowing users to easily

access each article's reliability score along with its rationale.

● The system displays clear visual indicators (color-coded reliability and credibility

scores, political spectrum graphics) to effectively convey the reliability and political

iasb of articles along with credibility of the article’s source.

● The system allows users to provide feedback on reliability of the articles and any

possible bugs with minimal steps.

● The system is accessible on all major Chromium browsers (Google Chrome, Opera,

Microsoft Edge and Brave) and other commonly used browsers Mozilla Firefox and

Safari [5]. The mobile application of CheckMate is compatible with both Android and

iOS platforms optimized for responsive display across different screen sizes.

1.2.2 Reliability

● The system ensures accuracy and consistency in reliability scoring and political bias

classification by continuously updating the reference database with credible sources.

● User feedback is incorporated into the system to continuously improve the reference

database and refine classification and scoring models over time.

1.2.3 Transparency

● The system provides clear justifications for reliability scores, detailing contributing

factors such as subjectivity and political biases, contradictory evidence, and source

credibility.

● The system allows users to review and contest assessments through a feedback

mechanism, fostering accountability and continuous improvement.

1.2.4 Performance

● The system parallelizes the similar article search to improve efficiency and reduce

latency.

4

● If an article from the same news source has already been analyzed by another user, the

system retrieves its reliability score analysis directly from the database, minimizing

redundant processing and ensuring a seamless user experience.

● The system optimizes interactions with APIs to minimize response times and improve

overall system responsiveness.

1.2.5 Scalability

● Requests are distributed across multiple servers to prevent bottlenecks and ensure

responsiveness.

● Similar article searches run in parallel to reduce processing time and improve

efficiency.

● The system leverages cloud computing resources to scale dynamically as the number of

users and processed articles increases.

● Asynchronous processing ensures that time-intensive analyses do not hinder real-time

user interactions.

1.2.6 Marketability

● The system is designed to appeal to a broad spectrum of users, including casual readers,

journalists, and researchers, showcasing clear benefits such as quick fact-checking and

source reliability.

● The system’s brand and messaging is crafted to highlight its role in combating

misinformation, increasing public trust and adoption.

● The system offers flexible integration options freemium, premium and enterprise

options to facilitate partnerships with news outlets, social media platforms, and

research organizations.

● The system utilizes a highly reliable dataset comprising credible news sources,

enabling it to compare the source of news articles against the reference database.

● The system has a mobile application compatible with both Android and iOS

environments designed to provide a user-friendly and seamless experience on mobile

devices.

1.2.7 Extendibility

● The system’s architecture is modular, allowing new features—such as additional

language support or advanced NLP models—to be integrated with minimal disruption.

5

● The codebase and database structures are organized in a manner that supports easy

inclusion of updated or alternative fact-checking sources and models.

1.2.8 Security

● The system ensures that all collected user data, including user information, visited

articles, and feedback, is handled in strict compliance with relevant data protection

regulations (GDPR).

● The system employs end-to-end encryption for data transmission and securely stores

user passwords using Werkzeug Security,

● The system will implement robust authentication mechanisms.

1.2.9 Maintainability

● The system’s source code follows standardized coding conventions and best practices,

making it easier for new developers to understand and modify.

● Comprehensive documentation will be provided, covering architecture, APIs, and

deployment procedures.

1.2.10 Flexibility

● The system is implemented on all of the popular browsers (Google Chrome, Opera,

Microsoft Edge, Brave, Mozilla Firefox, Safari) and mobile platforms (iOS, Android).

● Mobile application ensures users can seamlessly access fact-checking features and

reliability scores on the go.

1.2.11 Aesthetics

● The user interface has a clean, modern design that aligns with current web interface

trends, ensuring visual appeal without distracting from core functionality.

● Consistent color themes, typography, and iconography will be used for readability and

brand identity.

● Visual cues (alerts, hover-over and loading animations) enhance the user experience,

guiding user interactions and clarifying complex information

1.3 Definitions, acronyms, and abbreviations

API: An API, or Application Programming Interface, is a collection of rules and protocols that

allow software applications to interact and share data, features, or functionality. API

6

communication can be understood as an exchange of requests and responses between a client

and a server. The client is the application sending the request, while the server processes the

request and sends back a response. The API acts as the intermediary, facilitating this

connection between the two [6].

NLP: Natural Language Processing (NLP) is a branch of computer science and artificial

intelligence focused on enabling computers to comprehend human language. It combines

computational linguistics, which examines the mechanics of language, with statistical methods,

machine learning, and deep learning models. These techniques equip computers to analyze and

interpret text or speech data, understanding their overall meaning, as well as the speaker's or

writer's intentions and emotions [7].

ML: Machine learning (ML) is a branch of artificial intelligence (AI) and computer science

that focuses on using data and algorithms to enable AI to imitate the way that humans learn,

gradually improving its accuracy [8].

URL: The location of a webpage or file on the Internet [9].

GDPR: The General Data Protection Regulation, or GDPR, is a European Union (EU) law that

governs how organizations within and outside the EU handle the personal data of EU residents.

GDPR was adopted by the European Parliament and Council of the EU in 2016 and took effect

on 25 May 2018 [10].

EFCSN: The European Fact-Checking Standards Network [11]

AI: Artificial intelligence (AI) refers to the capability of a digital computer or a robot

controlled by computers to carry out tasks that are typically linked to intelligent entities. This

term is often used to describe the endeavor of creating systems that possess human-like

intellectual abilities, such as reasoning, uncovering meaning, generalizing, or learning from

previous experiences. [12]

1.4 Overview

Checkmate is a tool designed to analyze the reliability, credibility, subjectivity and political

bias of news articles by leveraging advanced NLP models and a robust backend architecture.

Users can submit articles for evaluation, after which the application processes the content
7

through multiple analytical components. The language analyzer model assesses the grammar

and linguistic structures of the article, the political bias classification model classifies the

article along the political spectrum, and the image verification module performs reverse

searches on images within the article to validate their context and authenticity. The backend

aggregates these results to calculate a credibility score and generates a detailed report outlining

the reasoning behind the evaluation. Additionally, users can compare articles with similar

content and access previously analyzed reports for further reference.

The application also includes comprehensive account management and customization features.

Users can create accounts, log in, and manage their profiles by changing passwords, updating

payment plans, or upgrading to premium. For those using browser extensions, the application

allows settings to be modified to enhance functionality. The application ensures data privacy

and provides mechanisms to handle common issues, such as login or signup errors. Feedback

from users is received and stored to improve the overall system performance.

With these capabilities, Checkmate provides an efficient and systematic approach to evaluating

news articles. Its integration of AI-driven analysis ensures that the credibility and bias of

content are assessed with precision, enabling users to critically engage with information. The

combination of technical rigor and user-oriented design makes Checkmate a valuable resource

for fostering media literacy and informed decision-making.

2. Current Software Architecture

2.1 Manual Competitors
● Teyit.org: A crowd-sourced fact-checking platform that relies on human expertise rather than

automation [13].

● Meta (parent company of Facebook and Instagram) fact-checking: Employs human

fact-checkers to review content flagged as potentially false. This approach struggles with

scalability and is often too slow to address the rapid spread of misinformation across Meta’s

platforms [1].

● Reddit based fact-checking: Collaborative fact-checking efforts through user contributions and

discussion on the Reddit platform.

● Community Notes on X (formerly Twitter): A crowdsourced approach that relies on users to

provide contextual information and fact-checks for various contents [2].

8

These manual solutions provide sophisticated analysis but suffer from limited scalability and speed,

especially during high-activity periods such as elections or globally sensitive events.

2.2 Automated Competitors
● InVID and WeVerify: Browser extensions specifically designed for video and image

verification, but they lack text analysis capabilities [14].

● SurfSafe: Chrome extension focuses on identifying the source of images to determine

legitimacy but doesn't analyze accompanying text content [15].

● Google Fact Check Tools: Web tool compiles and indexes fact-check reports from reputable

sources but is reactive rather than proactive, as it only works for previously fact-checked

claims [16].

● ClaimBuster and Hoaxy: Tools designed to identify claims that should be fact-checked or to

track the flow of misinformation, primarily targeting researchers and organizations rather than

general users [17, 18].

The key advantage of CheckMate over these solutions is its comprehensive approach that integrates

multiple verification methods (text analysis, multimedia verification, political bias detection,

objectivity analysis and source analysis) into a single, user-friendly browser extension and mobile

application designed for real-time analysis and immediate output to users.

2.3 Limitations of Current Solutions
Current solutions in the fact-checking ecosystem exhibit several key limitations:

● Reactive vs. Proactive: Most existing solutions are reactive, addressing content only after it has

been flagged or has already spread.

● Specialization vs. Integration: Current automated tools typically focus on specific aspects (only

text or only multimedia) without offering holistic comprehensive analysis.

● Scalability Challenges: Manual fact-checking cannot keep pace with the volume of content

being produced daily.

● Bias Detection Gap: Few solutions such as GroundNews [19] comprehensively address

political bias detection alongside factual accuracy.

● Accessibility: Many sophisticated tools are designed for professional fact-checkers or

researchers rather than everyday internet users [17, 18].

9

CheckMate aims to address these limitations through an integrated NLP-driven approach that provides

immediate, comprehensive analysis of both factual accuracy and political bias, making fact-checking

accessible to everyday users through a convenient browser extension. CheckMate addresses these

limitations in existing tools by offering:

● Real-time analysis instead of just reactive verification

● Integration of both textual and multimedia analysis

● Political bias detection alongside factual verification

● User-friendly interface for the general public

● Automated processing that scales better than manual solutions

3. Proposed Software Architecture

3.1 Overview
The system is designed as a browser extension compatible with Chromium-based browsers such as

Google Chrome, Opera, Microsoft Edge, Brave [5], and other common browsers such as Mozilla

Firefox and Safari. Additionally, it is also available as mobile apps for both iOS and Android

environments.

CheckMate comprises several external services, core analyzers, databases and score calculation

working together to give reliability scores to news.

3.1.1. External Services

● Amazon RDS handles the management of our database, which includes three tables:

user information, news reliability results, and news source reference tables [20].

● Amazon EC2 servers provide the necessary endpoints for our backend and host NLP

models which are similarity, political bias classification, and objectivity classification

models [21].

● Google Custom Search API handles text-based reverse searches to validate article

content [22].

● Google Cloud Vision API handles image analysis and reverse searches [23].

3.1.2. Core Analyzers

The CheckMate architecture consists of 6 main components that work together to provide

fact-checking and political bias detection:

10

● Reliability Analyzer Component: ML model that analyzes the reliability of the news

using the similarity and credibility scores, political and objectivity classification results

with image analysis results.

● Reverse Search Component: Reverse searches the title of the news using Google

Custom Search API to find relevant news.

● Similarity Analyzer Component: Semantic similarity model that analyzes the similarity

of the news article with the articles that were found through reverse search using

Google Custom Search API.

● Content Analyzer Component: Analyzes the textual content of news articles using

political bias classification and objectivity classification models to determine political

inclination and bias.

● Source Analyzer Component: Cross references the source of the news with our

reference database [24] to establish the credibility score of the news source.

● Multimedia Analyzer Component: Analyzes images on the news using reverse search

to verify if they've been used out of context or manipulated using Google Cloud Vision

API.

3.1.3. Data & Databases

Amazon RDS handles the management of our database, which includes five tables, through

PostgreSQL.

● News Source Reference table stores the known trusted news sources with their

credibility labels gathered from [24].

● All Articles table holds the outcomes of each analysis with reliability scores, credibility

scores, political bias classification results, similarity results, objectivity classification

results and image analysis results with news URL and news title. It also holds the last

search date for the news’ reliability score to get updated every week.

● User Information table holds the details of registered users, including attributes such as

user ID, email address, password (hashed for security), creation date, subscription plan

and Google ID (for sign in with Google option). This table is essential for managing

user authentication, profile information, and activity tracking within the system.

● Similar Articles table stores the 10 reverse-searched articles, including each article's

title, URL, similarity score (from the similarity analyzer component), and search date.

Reverse search is performed using the searched news text via the Google Custom

Search API.

11

● Articles Searched by User table holds the news searched by the user with search date.

3.1.4. Score Calculation

● Reliability Score Calculator model uses the similarity and credibility scores, political

bias and objectivity classification results with image analysis results to give a reliability

score to the news.

● Similarity Score Calculator model compares the news’ text with other articles found by

searching the original news’ title via Google Custom Search API.

● Credibility Score calculation is done by referencing the news’ source within our News

Source Reference table.

By orchestrating these components through well-defined interfaces, CheckMate efficiently

processes news from multiple angles content, source, and multimedia to deliver a

comprehensive reliability and credibility assessment, which is then stored for future reference

and user queries.

12

3.2 Subsystem Decomposition

CheckMate consists of four main layers: Client Layer, AWS Layer, External APIs Layer, and Backend

Logic Layer.

3.2.1 Client Layer

The client layer includes the user interfaces for CheckMate Extension and CheckMate Mobile,

allowing users to interact with the system. Each client interface provides access to key functionalities

such as authentication (sign-in and sign-up), dashboard, history, profile management, detailed results,

and analysis reports. The client layer interacts with the backend services via authentication and

navigation modules.

13

3.2.2 Backend Logic Layer (AWS)

The backend logic is hosted on AWS EC2 servers and handles the system's core functionalities. This

layer consists of:

Backend Server: Manages communication between the client layer and the processing components.

Website Checker: Evaluates the credibility of a given website.

Reverse Search: Performs similar article extraction and fact-checking using external APIs.

Article Extractor: Extracts and analyzes textual content from web sources.

Machine Learning Models: Provides AI-driven analysis for misinformation detection.

The backend layer interacts with a relational database to store and retrieve necessary data, ensuring

efficient system operations.

3.2.3 External APIs Layer

The External APIs layer enhances CheckMate’s capabilities by integrating third-party services:

Google Custom Search API: Retrieves web results related to fact-checking queries [22].

Google Cloud Vision API: Facilitates image recognition and analysis for reverse searching [23].

3.2.4 Interactions Between Layers

Users interact with the Client Layer through the extension or mobile application.

Requests are processed by the Backend Logic Layer, which communicates with AWS services and

machine learning models.

If external data is needed, the backend interacts with Google Cloud Vision and Custom Search APIs

for image and web search results.

The relational database stores relevant data for future analysis and system optimization.

This layered architecture ensures modularity, scalability, and efficient data flow, enabling CheckMate

to provide accurate and real-time fact-checking results.

14

3.3 Hardware/software mapping

The CheckMate system consists of four main modules in its hardware/software mapping:

CheckMate Client, AWS, Database, and Codebase. The CheckMate Client module includes the

CheckMate Extension and CheckMate Mobile, which provide the user interface for interacting with

the system. These clients communicate with the CheckMate Backend Server, which is deployed on

AWS. The backend is responsible for handling requests and running machine learning models,

including the Similarity Calculator Model, Objectivity Classification Model, Political Bias

Classification Model, and Reliability Score Calculator Model, to analyze and classify input data. The

AWS RDS module serves as the database, storing user interactions, analysis results, and system data.

Additionally, the Codebase module is hosted on GitHub, where the source code is maintained and

updated. This structure ensures that CheckMate is scalable, secure, and capable of handling multiple

user requests efficiently.

15

3.4 Access control and security

CheckMate implements a tiered access control system to manage user permissions and security

across its Free, Premium, and Enterprise models. Authentication and authorization are handled

through a secure backend, ensuring that users can only access features allowed by their subscription

tier. Free users have limited daily usage, including a cap on fact-checking requests and analysis

reports. Premium users gain extended access with higher daily limits and extra outputs from AI

models. Enterprise users receive unrestricted access, custom API access. All user data is securely

stored in AWS RDS, with strict access controls to prevent unauthorized modifications. Additionally,

role-based authentication ensures that sensitive operations, such as modifying subscription plans or

accessing administrative tools, are restricted to authorized users only.

4. Subsystem Services

4.1 Client Subsystem

The Client Subsystem consists of the CheckMate Extension and CheckMate Mobile, which serve as

the primary interfaces for users. These components allow users to submit URLs, articles, or text for

fact-checking, view analysis results, and interact with various features. The client communicates with

the backend through API requests, ensuring seamless data exchange between the frontend and the

backend.

16

4.1.1 Components of the Client Subsystem

● Main Menu: Serves as the entry point for users, providing access to all primary functionalities

such as fact-checking, history, and profile settings.

● Dashboard: Displays summarized analysis results, notifications, and system recommendations

based on recent activities.

● History: Stores previously analyzed articles, allowing users to revisit past fact-checking results.

● Profile: Manages user information, including subscription status (Free, Premium, Enterprise)

and personalized settings.

● Report/Feedback: Allows users to submit feedback on fact-checking results, suggest new

sources, or report inaccuracies.

● Subscription: Handles user access levels, showing available plans and processing upgrades to

Premium or Enterprise models.

● Detailed Results: Provides in-depth analysis, including similarity scores, objectivity ratings,

political bias classification, and reliability scores.

● Analysis Result: A summary of the overall fact-checking findings, displayed in a user-friendly

format.

● Sign In / Sign Up: Manages user authentication and account creation.

● Authentication: Ensures secure user login and verifies subscription status for access to

premium features.

● Navigation: Handles internal transitions between different sections of the client application.

17

4.2 AWS Subsystem

The AWS Subsystem forms the core backend infrastructure, responsible for handling fact-checking

requests, processing machine learning models, managing data, and ensuring system reliability. The

backend is designed to efficiently process high volumes of requests while maintaining security and

scalability.

4.2.1 Components of the AWS Subsystem

● CheckMate Backend Server: The central processing unit of the system that manages user

requests, processes authentication, retrieves data from the database, and coordinates

interactions between machine learning models and external APIs.

● Website Checker: A module within the backend that verifies URLs submitted by users,

extracting relevant content for fact-checking.

● Article Extractor: Processes raw text from submitted URLs or user input, preparing it for

analysis by different machine learning models.

● Reverse Search: Searches the web for similar articles, helping determine if a claim has already

been fact-checked by trusted sources.

● Machine Learning Models: A set of AI-driven components that analyze the extracted text and

generate credibility scores:

○ Similarity Calculator Model: Uses natural language processing (NLP) to compare the

submitted claim with existing fact-checked content, determining how closely it matches

known misinformation.

○ Objectivity Classification Model: Evaluates whether the text is neutral, opinionated, or

highly biased, helping users identify potential misinformation.
18

○ Political Bias Classification Model: Assesses the political alignment of the text,

providing insights into potential ideological biases.

○ Reliability Score Calculator Model: Aggregates multiple factors such as source

credibility, historical accuracy, and fact-checking results to generate a final reliability

score.

● Relational Database Server (AWS RDS): Stores all user data, analysis results, fact-checking

history, and system logs in a structured format. The database ensures secure and efficient data

retrieval.

4.3 External APIs Subsystem

The External APIs Subsystem enhances CheckMate’s capabilities by integrating third-party services

for additional data retrieval, text processing, and image analysis.

4.3.1 Components of the External APIs Subsystem

● Google Cloud Vision API: Used for analyzing images, allowing CheckMate to extract

information from images of news articles, social media posts. This ensures that misinformation

shared through images can also be fact-checked.

● Google Custom Search API: Enables advanced reverse searching of web content to find

original sources of claims. This helps determine whether an article or statement has been

republished, manipulated, or taken out of context.

19

5. Test Cases

Test ID TC_1.1 – Add
Extension

Category Functional Severity Critical

Objective Verify the extension can be installed successfully.

Steps User installs the Checkmate extension.

Expected Extension installation succeeds with no errors (the extension icon is visible).

Result Pass

Date 01.03.2025

Test ID TC_1.2 – Sign Up

with Valid Data
Category Functional Severity Critical

Objective Verify that a new account is created with valid data.

Steps User clicks Sign Up.
User enters valid name, email, phone number, password, confirm password.
User clicks Sign Up.

Expected The user is added to the database otherwise an appropriate error is given.

Result Pass

Date 01.03.2025

Test ID TC_1.3 – Sign Up

with Missing
Fields

Category Functional Severity Major

Objective Ensure an error is shown if any required fields are omitted.

Steps User clicks Sign Up.
User leaves at least one required field blank (e.g., phone or password).
User clicks Sign Up.

Expected Error message appears prompting the user to fill the missing field(s).

20

Result Pass

Date 01.03.2025

Test ID TC_1.4 – Sign Up

with Invalid Email
Category Functional Severity Major

Objective Confirm that an invalid email format is not accepted.

Steps User clicks Sign Up.
User enters an invalid email (e.g., “test@” or missing “@”).
User fills other fields correctly.
User clicks Sign Up.

Expected An error message is displayed (e.g., “Invalid email format”); account is not created.

Result Fail

Date 01.03.2025

Test ID TC_1.5 – Sign Up

with Password
Mismatch

Category Functional Severity Minor

Objective Ensure password and confirm password must match.

Steps User clicks Sign Up.
User enters a valid password in “Password” but a different value in “Confirm
Password.”
User clicks Sign Up.

Expected Error message indicates the passwords do not match; account is not created.

Result Pass

Date 01.03.2025

21

Test ID TC_1.6 – Sign Up

with Existing
Email

Category Functional Severity Major

Objective Check that the system prevents duplicate accounts with the same email.

Steps User clicks Sign Up.
User enters an email that already exists in the system.
User fills in other fields and clicks Sign Up.

Expected Error message “Email already exists” (or similar); account creation is blocked.

Result Pass

Date 01.03.2025

Test ID TC_2.1 – Log In

with Valid
Credentials

Category Functional Severity Major

Objective Ensure that users can log in with the correct email/password.

Steps User opens the extension.
User clicks Sign In.
User enters a valid email and password.
User clicks Sign In.

Expected User is redirected to the MainMainPage

Result Pass

Date 01.03.2025

Test ID TC_2.2 – Log In

with Invalid
Password

Category Functional Severity Major

Objective Verify incorrect passwords are rejected.

Steps User opens the extension.
User clicks Sign In.

22

User enters the correct email but an incorrect password.
User clicks Sign In.

Expected An error message is displayed (e.g., “Invalid password”); login fails.

Result Pass

Date 01.03.2025

Test ID TC_2.3 – Log In

with Non-Existent
Email

Category Functional Severity Major

Objective Check that users cannot log in using an unregistered email.

Steps User opens the extension.
User clicks Sign In.
User enters an email not found in the database.
User clicks Sign In.

Expected Error message “Email not found” (or similar) is displayed.

Result Pass

Date 01.03.2025

Test ID TC_2.4 – Log In

with Empty Fields
Category Functional Severity Major

Objective Ensure the system requires both email and password.

Steps User opens the extension, clicks Sign In.
User leaves email or password blank.
User clicks Sign In.

Expected System displays an error indicating missing credentials.

Result Pass

Date 01.03.2025

23

Test ID TC_3.1 – Standard

Logout
Category Functional Severity Major

Objective Ensure that clicking logout signs the user out.

Steps User clicks the logout icon.

Expected User is signed out and redirected to the login page (or sees a logged-out state).

Result Pass

Date 01.03.2025

Test ID TC_3.2 – Logout

via Inactivity
Category Functional Severity Minor

Objective Check if the system auto-logs out a user after inactivity.

Steps User logs in, then remains idle for the configured time limit.

Expected System logs the user out automatically, requiring re-login.

Result Pass

Date 01.03.2025

Test ID TC_4.1 – Analyze

a Valid Article
Page

Category Functional Severity Critical

Objective Verify that analyzing a valid news/article page works.

Steps User clicks Analyze Current Page.

Expected System displays reliability score, analysis summary, similar articles, and any image
analysis.

Result Fail. Image analysis is missing

Date 01.03.2025

24

Test ID TC_4.2 – Analyze
a Non-Article Page
or Invalid Content

Category Functional Severity Major

Objective Ensure the system handles invalid pages

Steps User is on a page that is not a typical article (e.g., a blank page).
User clicks Analyze Current Page.

Expected System either shows an error (“Unable to analyze”) or minimal results.

Result Fail

Date 01.03.2025

Test ID TC_5.1 – Analyze

Valid URL
Category Functional Severity Critical

Objective Verify user can input a URL to be analyzed with the same reliability features.

Steps User enters a valid URL in the input box.
User clicks Analyze URL.

Expected System displays reliability score, similar articles, image analysis, etc.

Result Fail. Image analysis is missing.

Date 01.03.2025

Test ID TC_5.2 – Analyze

Invalid or Empty
URL

Category Functional Severity Major

Objective Check system response to an invalid or no URL.

Steps User leaves the URL box empty or types a malformed URL (e.g., htp://notvalid).
User clicks Analyze URL.

Expected Error message prompts user that the URL is invalid, or to fill in the input box.

Result Fail. Invalid URL can still be entered.

25

Date 01.03.2025

Test ID TC_6 – View More

Details for Valid
Analysis

Category Functional Severity Major

Objective Verify that clicking “Show more details” loads additional information about the article.

Steps After the article is analyzed, user clicks Show More Details.

Expected System shows extra details (stats, references, etc.).

Result Pass

Date 01.03.2025

Test ID TC_7.1 – Change

Plan to Premium
Category Functional Severity Major

Objective Ensure a user can upgrade from free to premium.

Steps User clicks profile icon.
User selects “Premium” plan.

Expected Plan changes to premium; user sees updated subscription status.

Result Pass

Date 01.03.2025

Test ID TC_7.2 – Change
Plan to Enterprise

Category Functional Severity Major

Objective Verify a user can change from premium/free to enterprise.

Steps User clicks profile icon.
User selects “Enterprise” plan.

Expected User subscription changes to enterprise plan.

26

Result Pass

Date 01.03.2025

Test ID TC_7.3 – Change
Plan to Free

Category Functional Severity Major

Objective Check a user can revert back to free.

Steps User clicks profile icon.
Selects “Free” plan.

Expected Subscription changes to free; possibly showing a downgrade confirmation.

Result Pass

Date 01.03.2025

Test ID TC_7.4 – Change
Plan with Payment
Failure

Category Functional Severity Major

Objective See what happens if payment for a paid plan fails.

Steps User selects a paid plan.
Payment gateway returns a failure or declines the card.

Expected System notifies user of payment failure; plan remains unchanged.

Result Fail

Date 01.03.2025

Test ID TC_8.1 – Change
Password
Successfully

Category Functional Severity Minor

Objective User can change their current password to a new one.

Steps User clicks profile icon.
User selects Change Password.

27

User enters the new password and confirms it correctly.
User clicks Change Password button.

Expected Password updates; user sees success message.

Result Pass

Date 01.03.2025

Test ID TC_8.2 – Change
Password with
Mismatched
Confirmation

Category Functional Severity Minor

Objective Ensure mismatched new passwords are detected.

Steps User enters new password but a different confirm password.
User clicks Change Password.

Expected Error message: “Passwords do not match.”

Result Pass

Date 01.03.2025

Test ID TC_8.3 – Change
Password with
Blank Fields

Category Functional Severity Minor

Objective Check that all fields are required.

Steps User leaves the new password or confirm password field empty.
User clicks Change Password.

Expected Error message: “Please fill all required fields.”

Result Pass

Date 01.03.2025

Test ID TC_9 – View
Dashboard

Category Functional Severity Major

28

Objective Check that clicking “Your Dashboard” shows correct stats.

Steps User logs in.
User clicks MainMenuPage → “Your Dashboard” (or Profile → Dashboard).

Expected Dashboard displays daily limit, # of articles analyzed, average reliability score, total
articles.

Result Pass

Date 01.03.2025

Test ID TC_10 – View
History

Category Functional Severity Major

Objective Check that clicking “Your Dashboard” shows correct stats.

Steps User logs in.
User clicks MainMenuPage → “Your Dashboard” (or Profile → Dashboard).

Expected Dashboard displays daily limit, # of articles analyzed, average reliability score, total
articles.

Result Pass

Date 01.03.2025

Test ID TC_11 – Send
Report

Category Functional Severity Major

Objective Confirm a user can file a “mistake” report.

Steps User clicks Report Icon or Report Mistake.
User selects “Mistake” as report type.
User enters a message.
User clicks Send Report.

Expected Report is sent to admins.

Result Pass

Date 01.03.2025

29

Test ID TC_12.1 – Forgot
Password with
Valid Email

Category Functional Severity Major

Objective Ensure the user can reset their password using a correct email and code.

Steps User clicks Sign In → Forgot Password link.
User enters their valid email and clicks Send Verification Code.
User receives the code by email, enters it, and sets a new password.
User confirms new password.

Expected Password is updated; user can log in with the new password.

Result Pass

Date 01.03.2025

Test ID TC_12.2 – Forgot
Password with
Unregistered Email

Category Functional Severity Minor

Objective Verify the system rejects invalid/unregistered emails for password reset.

Steps User clicks Forgot Password.
User enters an email not in the system.
User clicks Send Verification Code.

Expected Error message: “Email not found” or similar.

Result Fail

Date 01.03.2025

Test ID TC_12.3 – Forgot
Password with
Invalid Verification
Code

Category Functional Severity Major

Objective Check that an incorrect code is not accepted.

Steps User enters a verification code that is wrong or expired.
User tries to set a new password.

Expected Error message indicates invalid or expired code.

30

Result Fail. Code doesn't expire.

Date 01.03.2025

Test ID TC_12.4 – Forgot
Password with
Mismatched New
Passwords

Category Functional Severity Major

Objective Ensure new password and confirm password must match.

Steps User enters a valid verification code.
User types a new password but a different confirm password.
User clicks Submit.

Expected Error message “Passwords do not match.”

Result Pass

Date 01.03.2025

Test ID TC_13 – View
Credibility after
Analyzing

Category Functional Severity Critical

Objective User can see if a website is “credible,” “mixed,” or “uncredible.”

Steps User clicks Analyze Current Page or inputs URL.
After results load, user clicks More Details.

Expected System displays credibility status (“credible,” “mixed,” or “uncredible”).

Result Pass

Date 01.03.2025

Test ID TC_14.1 –

Similarity
Detection Model

Category Functional Severity Critical

31

Objective Verify the similarity detection model correctly identifies text similarity.

Steps Provide two identical text inputs to the model.

Expected Output = 1 (identical texts).

Result Pass

Date 01.03.2025

Test ID TC_14.2 –

Similarity
Detection Model

Category Functional Severity Critical

Objective Verify the similarity detection model correctly identifies text similarity.

Steps Provide two completely different with no semantic similarity text inputs to the model.

Expected Output = 0 (no similarity).

Result Pass

Date 01.03.2025

Test ID TC_14.3 –

Similarity
Detection Model

Category Functional Severity Critical

Objective Verify the similarity detection model correctly identifies text similarity.

Steps Provide two partially similar text inputs to the model.

Expected Output = a value between 0 and 1 (partial similarity).

Result Pass

Date 01.03.2025

32

Test ID TC_15.1 –

Objectivity
Classification
Model

Category Functional Severity Critical

Objective Verify the objectivity classification model correctly classifies text as objective or
subjective.

Steps Provide a factual news article (e.g., "The population of New York is 8.5 million")..

Expected Output = "Objective".

Result Pass

Date 01.03.2025

Test ID TC_15.2 –

Objectivity
Classification
Model

Category Functional Severity Critical

Objective Verify the objectivity classification model correctly classifies text as objective or
subjective.

Steps Provide an opinion piece (e.g., "New York is the best city in the world").

Expected Output = "Subjective".

Result Pass

Date 01.03.2025

Test ID TC_16.1 –

Political Bias
Classification
Model

Category Functional Severity Critical

Objective Verify the political bias classification model correctly identifies bias as left, center, or
right.

Steps Provide a text with left-leaning political bias (e.g., "The government should increase
taxes on the wealthy to fund social programs").

33

Expected Output = "Left".

Result Pass

Date 01.03.2025

Test ID TC_16.2 –

Political Bias
Classification
Model

Category Functional Severity Critical

Objective Verify the political bias classification model correctly identifies bias as left, center, or
right.

Steps Provide a text with right-leaning political bias (e.g., "Lower taxes for businesses will
stimulate economic growth").

Expected Output = "Right".

Result Pass

Date 01.03.2025

Test ID TC_16.3 –

Political Bias
Classification
Model

Category Functional Severity Critical

Objective Verify the political bias classification model correctly identifies bias as left, center,
or right.

Steps Provide a politically neutral text

Expected Output = "Center".

Result Pass

Date 01.03.2025

34

Test ID TC_17.1 –

Reliability Score
Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

Steps Input a text article to the model and check if the model outputs a reliability score.

Expected A reliability score between 0-1 should be retrieved.

Result Fail

Date 01.03.2025

Test ID TC_17.2 –

Reliability Score
Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

Steps Input a fake news article and receive an output

Expected A reliability score between 0-0.5 should be retrieved.

Result Fail

Date 01.03.2025

Test ID TC_17.3 –

Reliability Score
Model

Category Functional Severity Critical

Objective Verify the reliability scoring model correctly assigns a reliability score between 0 and 1.

Steps Input a real news article and receive an output

Expected A reliability score between 0.5-1 should be retrieved.

Result Fail

35

Date 01.03.2025

Test ID TC_18.1 – Edge Case

Testing for Similarity
Detection Model

Category Edge … Severity Major

Objective Verify the similarity detection model handles edge cases correctly.

Steps Provide two texts with only stopwords (e.g., "the and is").

Expected Output = 1 (stopwords are considered identical)

Result Pass

Date 01.03.2025

Test ID TC_18.2 – Edge Case

Testing for Similarity
Detection Model

Category Edge … Severity Major

Objective Verify the similarity detection model handles edge cases correctly.

Steps Provide one text and an empty string as the second input.

Expected Output = 0 (no similarity with an empty string)

Result Pass

Date 01.03.2025

Test ID TC_19 – Edge Case

Testing for Objectivity
Classification Model

Category Edge … Severity Major

Objective Verify the objectivity classification model handles ambiguous or mixed texts.

Steps Provide a text that mixes facts and opinions (e.g., "The population of New York is 8.5
million, and it's the best city in the world").

36

Expected Output = "Subjective" (since the text contains opinions).

Result Pass

Date 01.03.2025

Test ID TC_20 – Edge Case

Testing for Political
Bias Classification
Model

Category Edge … Severity Major

Objective Verify the political bias classification model handles neutral or ambiguous texts.

Steps Provide a text with no political context (e.g., "The weather today is sunny").

Expected Output = "Center" (neutral).

Result Pass

Date 01.03.2025

Test ID TC_21 – Integration of

All Models
Category Integra… Severity Critical

Objective Verify all models work together seamlessly to provide a comprehensive fact-checking
output.

Steps Provide a news article as input.
Run the article through all models.

● Similarity detection
● Objectivity classification
● Political bias classification
● Reliability scoring

Expected Similarity detection output = value between 0 and 1.
Objectivity classification output = "Objective" or "Subjective".
Political bias classification output = "Left", "Center", or "Right".
Reliability scoring output = value between 0 and 1.

Result Fail

Date 01.03.2025

37

Test ID TC_22 – Claim

Extraction
Category Functional Severity Critical

Objective Ensure that claim extraction is complete

Steps Input a news article text.

Expected At least one claim must be extracted.

Result Pass

Date 01.03.2025

Test ID NFR-1 – Clear

Visual Indicators
Category Non-fu… Severity Major

Objective Ensure color-coded scoring and political compass graphics are visible and
understandable.

Steps User opens an article analysis page in the extension.
Inspect that the reliability score is color-coded (e.g., green=credible, yellow=mixed,
red=uncredible).
Check for a political compass graphic or textual indicator.

Expected Colors, icons, or textual labels are clear and consistent

Result Pass

Date 01.03.2025

Test ID NFR-2 – Browser

Compatibility
Category Compat… Severity Major

Objective The system is accessible on all major Chromium browsers (Google Chrome, Opera,
Microsoft Edge and Brave) as well as Mozilla Firefox and Safari.

Steps Use the extension

Expected No broken layouts or overlapping elements.
All critical functionality remains accessible at different browsers.

38

Result Fail

Date 01.03.2025

Test ID NFR-3 – Mobile

UI Responsiveness
& Usability

Category Usability Severity Major

Objective Validate that the mobile app’s interface is optimized for smaller screens and different
orientations (portrait/landscape).

Steps Open the app on various device sizes (phone and tablet).
Navigate through menus, open analysis results, and check any interactive elements
(e.g., text fields, buttons).
(Optional) Rotate the device from portrait to landscape.

Expected No UI elements are cut off or overlapping.
Buttons/fields are appropriately scaled and easy to tap.
Navigation remains logical in both orientations.

Result Pass

Date 01.03.2025

Test ID PERF-1 –

Response Time for
Browser Extension

Category Perform… Severity Critical

Objective Verify both browser extension and mobile app respond within acceptable time limits
for all user actions.

Steps Perform article analysis request using the browser extension.
Perform article analysis request using the mobile app.

Expected Response time ≤ 5 seconds for both browser extension and mobile app.

Result Pass

Date 01.03.2025

39

Test ID M-1 – Complete

Mobile App
Category Functional Severity Critical

Objective Ensure that core features (article analysis, reliability scoring, political compass,
account management, etc.) are available and function correctly on the mobile app,
matching the desktop extension.

Steps Launch the mobile app on a phone or tablet.
Log in.
Access and use each major feature (e.g., article analysis, viewing reliability scores,
changing subscription plan).

Expected All primary features that exist on the browser extension are also present in the mobile
app and function without major differences or missing steps.

Result Pass

Date 01.03.2025

Test ID M-2 – Log in to

the Mobile App
Category Functional Severity Critical

Objective Ensure that login works on the mobile application, and the token is generated.

Steps Open the app.
Enter the email and the password.
Press the login button.

Expected User is navigated to the homepage.
Token is generated.

Result Pass

Date 08.03.2025

Test ID M-3 – Log out of

the Mobile App
Category Functional Severity Critical

Objective Ensure that the user logs out upon token expiry.

Steps Open the app.
Log in.

40

Wait for 1 hour (token expiry).

Expected User is automatically logged out.

Result Pass

Date 08.03.2025

Test ID M-5 – More

Details page of
Article Analysis in
Mobile App

Category Functional Severity Critical

Objective Ensure that the user is automatically redirected to the article page after they analyze the
article on the mobile app.

Steps Open the app.
Login
Press the ‘Search’ button that is on the bottom-right of the page.
Enter the article url.
Press the ‘Analyze’ button.

Expected User is navigated to the article page.

Result Pass

Date 08.03.2025

6. Consideration of Various Factors in Engineering Design

6.1 Constraints
Implementation Constraints

● The browser extension is compatible with all major Chromium browsers (Google

Chrome, Opera, Microsoft Edge and Brave) as well as Mozilla Firefox and Safari [5].

● GitHub and Jira are used to track the deadlines, issues, and the codebase.

● HTML and CSS frameworks are used for frontend development.

● Python is used for machine learning (ML) development and backend development.

● PostgreSQL hosted by Amazon RDS server is used for the database system.

● Amazon Elastic Compute Cloud (Amazon EC2) server is used for ML model and

backend deployment.

41

Economic Constraints

● Our project requires several external libraries, frameworks, and models. Therefore, our

group has opted to use as many open-source frameworks as possible.

● Google Vision API [23], Google Custom Search API [22], ML model and backend

deployment on Amazon EC2 servers use a paid plan after the free tier parameters are

reached.

Ethical Constraints

● All interactions and data collected from the users are handled within data protection

law General Data Protection Regulation (GDPR).

● The users are informed about the application's limitations and scope before registration.

● The system utilizes personal data and storing said data in the database hosted on

Amazon RDS.

● No unnecessary user data will be collected.

● The system will clearly communicate to the user about its shortcomings.

● The system will clearly communicate reasons for reliability scores of the news articles

and the reasons for credibility scores for news sources.

● The system will suggest trustworthy sources to the user about the news article that they

are searching for.

● The system is designed to ensure objectivity and fairness, actively compensating for

any biased outcomes to provide accurate labeling of news articles and news sources.

Language Constraints

● The system will work on news articles and new sources in English because of the lack

of labeled Turkish news article datasets.

6.2 Standards
● The system will abide by the European Fact-Checking Standards Network (EFCSN) [11] as a

benchmark in fact-checking news articles.

● The system will abide by Google Cloud Vision API Terms of Service, Bing Search API

License Agreement, and other third-party API usage policies.

● The system will abide to General Data Protection Regulation (GDPR) [10]

42

7. Teamwork Details

7.1 Contributing and functioning effectively on the team

Our team collaborates using a combination of Agile-inspired methodologies, structured task

management, and frequent communication channels to ensure that everyone contributes

effectively to the project:

1. Project Management with JIRA

● We use JIRA as our primary tool for planning and tracking tasks. Each sprint is broken

down into subtasks, which are then assigned to individual team members.

● JIRA’s board view provides transparency into task status (e.g., To Do, In Progress,

Done) and helps us monitor deadlines, prioritize workload, and spot any bottlenecks.

2. Regular Communication and Meetings

● We maintain a WhatsApp group for rapid, day-to-day communication, allowing team

members to quickly share updates, ask questions, and coordinate ad-hoc tasks.

● In addition to ongoing online communication, we hold three weekly meetings to

discuss progress, align on upcoming goals, and resolve any challenges. .

3. Role Division and Collaboration

● Backend Team: Develops core server-side logic, database integrations, and APIs.

● Frontend Team: Implements the user interface, browser extension features, and mobile

app functionality.

● Machine Learning Team: Focuses on model development, training, and integration with

external services (e.g., NLP).

● Despite these primary roles, we encourage knowledge sharing and cross-functional

support. If someone encounters a roadblock, teammates from any domain can step in to

offer insights.

4. Coordination and Accountability

● Each member is responsible for updating JIRA tasks with progress notes and shifting

status as they move from development to testing.

● Even if there is a role division each member gets to work on a different team if another

team needs their help.

43

By combining these practices, our team maintains clear communication, well-defined

responsibilities, and a supportive environment that enables us to efficiently develop

CheckMate’s backend, frontend, and machine learning models.

7.2 Helping creating a collaborative and inclusive environment

Each team member takes the lead on a specific core component, but that doesn't prevent us

from assisting one another with coding challenges. Whenever someone encounters an issue

while coding we all work on it together by sharing the code with the issue among each other,

ensuring that everyone is informed and can analyze the code to help find a solution.

Additionally, we use WhatsApp and Google meet to discuss problems and share our planned

solutions, keeping the entire team updated. We recognize that this is a collaborative project,

and although tasks are divided among us, we all share the responsibility of delivering a fully

developed application.

7.3 Taking lead role and sharing leadership on the team

Our team embraces a domain-based leadership model, where individuals lead when they have

expertise in a specific area. For example, someone well-versed in mobile app development

guided that portion of the project, while another person with deep ML knowledge led model

selection and training. However, all major decisions still go through a collaborative process,

ensuring that everyone’s perspectives are considered.

Domain leads also act as mentors, sharing knowledge and providing hands-on guidance to

team members less familiar with their area of expertise. This approach fosters ownership, as

each member takes initiative in their specialty. It also keeps us agile—when new challenges

arise (e.g., optimizing the ML pipeline), the respective domain lead steps forward, with others

offering support.

Overall, this flexible leadership style ensures that each person can leverage their strengths,

while the team benefits from a shared sense of responsibility and balanced decision-making.

44

8. References

[1] Meta, "How fact-checking works," Meta Transparency Center. [Online]. Available:

https://transparency.meta.com/en-us/features/how-fact-checking-works/. [Accessed:

16-Nov-2024].

[2] X Help Center, "Community Notes," X, [Online]. Available:

https://help.x.com/en/using-x/community-notes. [Accessed: Mar. 8, 2025].

[3] Knight Science Journalism, "Fact-checking science journalism: How to make sure your

stories are true," KSJ Handbook. [Online]. Available:

https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories-are-t

rue/the-fact-checking-process/. [Accessed: 16-Nov-2024].

[4] J. Waterson, "Internet overtakes TV as UK’s most popular news source for first time," The

Guardian, 10-Sep-2024. [Online]. Available:

https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-news-sou

rce-first-time. [Accessed: 16-Nov-2024].

[5] Mihir J, “Browser Comparison Finale Chromium-based Browsers”, Medium. [Online].

Available:https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based-bro

wsers-2b6063e74165. [Accessed: 16-Nov-2024].

[6] IBM, "What is an API?," IBM Topics. [Online]. Available:

https://www.ibm.com/topics/api. [Accessed: 16-Nov-2024].

[7] GeeksforGeeks, "Natural language processing overview," GeeksforGeeks. [Online].

Available: https://www.geeksforgeeks.org/natural-language-processing-overview. [Accessed:

16-Nov-2024].

[8] IBM, "What is machine learning?," IBM Topics. [Online]. Available:

https://www.ibm.com/topics/machine-learning. [Accessed: 16-Nov-2024].

[9] Google, "URL," Google Support. [Online]. Available:

https://support.google.com/google-ads/answer/14095?hl=en. [Accessed: 16-Nov-2024].

45

https://transparency.meta.com/en-us/features/how-fact-checking-works/
https://help.x.com/en/using-x/community-notes
https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories-are-true/the-fact-checking-process/
https://ksjhandbook.org/fact-checking-science-journalism-how-to-make-sure-your-stories-are-true/the-fact-checking-process/
https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-news-source-first-time
https://www.theguardian.com/media/article/2024/sep/10/internet-tv-uk-most-popular-news-source-first-time
https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based-browsers-2b6063e74165
https://medium.com/@mihirgrand/browser-comparison-finale-chromium-based-browsers-2b6063e74165
https://www.ibm.com/topics/api
https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.ibm.com/topics/machine-learning
https://support.google.com/google-ads/answer/14095?hl=en

[10] IBM, “What is GDPR?”, IBM. [Online]. Available:

https://www.ibm.com/cloud/compliance/gdpr-eu. [Accessed: 25-Feb-2025].

[11] EFCSN, "Code of standards," EFCSN. [Online]. Available:

https://efcsn.com/code-of-standards/. [Accessed: 16-Nov-2024].

[12] Encyclopædia Britannica, "Artificial intelligence," Britannica, [Online]. Available:

https://www.britannica.com/technology/artificial-intelligence. [Accessed: Mar. 8, 2025].

[13] Teyit, "Teyit nedir?", Teyit, [Online]. Available: https://teyit.org/nedir. [Accessed: Mar. 8,

2025].

[14] InVID Project, "InVID verification plugin," InVID Project, [Online]. Available:

https://www.invid-project.eu/tools-and-services/invid-verification-plugin/. [Accessed: Mar. 8,

2025].

[15] SurfSafe, "SurfSafe: Join the fight against misinformation," Google Chrome Web Store,

[Online]. Available:

https://chromewebstore.google.com/detail/surfsafe-join-the-fight-a/hbpagabeiphkfhbboacggck

hkkipgdmh. [Accessed: Mar. 8, 2025].

[16] Google Fact Check Explorer, "About," Google, [Online]. Available:

https://toolbox.google.com/factcheck/about. [Accessed: Mar. 8, 2025].

[17] IDIR at University of Texas at Arlington, "ClaimBuster: Live fact-checking," University

of Texas at Arlington, [Online]. Available: https://idir.uta.edu/claimbuster/. [Accessed: Mar. 8,

2025].

[18] Observatory on Social Media, Indiana University, "Hoaxy FAQ," Indiana University,

[Online]. Available: https://hoaxy.osome.iu.edu/faq. [Accessed: Mar. 8, 2025].

[19] Ground News, "About," Ground News, [Online]. Available: https://ground.news/about.

[Accessed: Mar. 8, 2025].

46

https://www.ibm.com/cloud/compliance/gdpr-eu
https://efcsn.com/code-of-standards/
https://www.britannica.com/technology/artificial-intelligence
https://teyit.org/nedir
https://www.invid-project.eu/tools-and-services/invid-verification-plugin/
https://chromewebstore.google.com/detail/surfsafe-join-the-fight-a/hbpagabeiphkfhbboacggckhkkipgdmh
https://chromewebstore.google.com/detail/surfsafe-join-the-fight-a/hbpagabeiphkfhbboacggckhkkipgdmh
https://toolbox.google.com/factcheck/about
https://idir.uta.edu/claimbuster/
https://hoaxy.osome.iu.edu/faq
https://ground.news/about

[20] Amazon Web Services, "Amazon RDS," AWS, [Online]. Available:

https://aws.amazon.com/rds/?nc1=h_ls. [Accessed: Mar. 8, 2025].

[21] Amazon Web Services, "Amazon EC2," AWS, [Online]. Available:

https://aws.amazon.com/ec2/?nc1=h_ls. [Accessed: Mar. 8, 2025].

[22] Google Developers, "Custom Search JSON API introduction," Google, [Online].

Available: https://developers.google.com/custom-search/v1/introduction. [Accessed: Mar. 8,

2025].

[23] Google Cloud, "Cloud Vision API," Google Cloud, [Online]. Available:

https://cloud.google.com/vision?hl=tr. [Accessed: Mar. 8, 2025].

[24] J. Thorne et al., "Automated fact-checking: Tasks, datasets, models, and challenges,"

arXiv preprint arXiv:2203.05659, 2022. [Online]. Available:

https://doi.org/10.48550/arXiv.2203.05659. [Accessed: Mar. 8, 2025].

47

https://aws.amazon.com/rds/?nc1=h_ls
https://aws.amazon.com/ec2/?nc1=h_ls
https://developers.google.com/custom-search/v1/introduction
https://cloud.google.com/vision?hl=tr
https://doi.org/10.48550/arXiv.2203.05659

	
	1. Introduction
	1.1 Purpose of the System
	1.2 Design Goals
	1.2.1 Usability
	1.2.2 Reliability
	1.2.3 Transparency
	1.2.4 Performance
	1.2.5 Scalability
	1.2.6 Marketability
	1.2.7 Extendibility
	1.2.8 Security
	1.2.9 Maintainability
	1.2.10 Flexibility
	1.2.11 Aesthetics

	1.3 Definitions, acronyms, and abbreviations
	1.4 Overview

	2. Current Software Architecture
	2.1 Manual Competitors
	2.2 Automated Competitors
	2.3 Limitations of Current Solutions

	3. Proposed Software Architecture
	3.1 Overview
	3.1.1. External Services
	3.1.2. Core Analyzers
	3.1.3. Data & Databases
	3.1.4. Score Calculation

	
	3.2 Subsystem Decomposition
	3.2.1 Client Layer
	3.2.2 Backend Logic Layer (AWS)
	3.2.3 External APIs Layer
	3.2.4 Interactions Between Layers

	3.3 Hardware/software mapping
	3.4 Access control and security

	4. Subsystem Services
	4.1 Client Subsystem
	4.1.1 Components of the Client Subsystem
	

	4.2 AWS Subsystem
	4.2.1 Components of the AWS Subsystem

	4.3 External APIs Subsystem
	4.3.1 Components of the External APIs Subsystem

	
	5. Test Cases
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	6. Consideration of Various Factors in Engineering Design
	6.1 Constraints
	6.2 Standards

	7. Teamwork Details
	7.1 Contributing and functioning effectively on the team
	7.2 Helping creating a collaborative and inclusive environment
	7.3 Taking lead role and sharing leadership on the team

	8. References

